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Abstract.

Falls are a leading cause of death in adults 65 and older in the United States. Recent

efforts to restore lower-limb function in these populations have seen an increase in

the use of wearable robotic systems; however, fall prevention measures in wearable

robots require early detection of balance loss to be effective. Prior studies have

investigated whether kinematic variables contain information about an impending fall,

but few have examined the potential of using scalp electroencephalography (EEG) as

a fall-predicting signal. Moreover, there exists a major gap in our understanding

of not only how the brain detects and processes balance perturbations, but also

on how it responds to avoid a fall. To address these knowledge gaps, we decoded

neural activity in a balance perturbation task during standing with and without

an exoskeletal suit. Specifically, we acquired high-density EEG, electromyography

(EMG), and center of pressure (COP) data from 7 healthy participants during both

fixed and random parameter mechanical perturbations while standing. The timing

of the perturbations was randomized in all trials. We found perturbations evoked

potentials (PEP) components as early as 75-134 ms after the onset of the external

perturbation, which preceded both the peak in EMG activity (˜180 ms) and the

COP (˜350 ms). We then trained a convolutional neural network (CNN) to predict

the balance perturbations from single-trial EEG. The CNN model, had a mean F

score of 75.0 ± 4.3 %. Using a novel approach of clustering GradCAM based model

explanations, we demonstrated that the model utilized relevant components in the PEP

to infer the predictions and was not driven by artifacts. The model’s explanations

further aligned with a dynamic functional connectivity measure estimated from the

phase difference derivative. Specifically, the nodal connectivity was higher in the

occipital-parietal region in the early stage of the perturbations, before shifting to

the parietal, motor, and back to the frontal-parietal channels, suggesting a closed-

loop network. Continuous-time decoding of COP trajectories from EEG, using a

gated recurrent unit model, achieved a mean Pearson’s correlation coefficient of 0.7

± 0.06. Overall, our findings suggest that the EEG signals contain short-latency

neural information related to an impending fall, which may be useful for developing

brain-machine interface (BMI) systems for fall prevention in robotic exoskeletons.
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1. Introduction

The World Health Organization (WHO) reported that over 37 million falls require

medical attention each year worldwide [1]. Indeed, falls are a leading cause of injury, loss

of independence, hospital admission, and even death. While conventional therapies have

been successful in fall reduction and prevention, many individuals with severe illness or

injury remain unable to participate in activities of daily living (ADLs) or complete

standard care protocols. Recent efforts to aid these populations have utilized wearable

robotic systems and, in particular, powered robotic orthoses (i.e., exoskeletons) [2],[3].

The U.S. Food and Drug Administration (FDA) classifies powered exoskeletons as

Class 2 medical devices with special controls. They are used frequently for rehabilitation

applications due to their ability to provide active, assistive support for walking, sitting,

and standing [4],[5]. When compared to traditional therapies, these devices provide

intense training in an active and stimulating environment while providing quantifiable

markers of progression [6],[7]. In addition to rehabilitation, exoskeletons can also be

purposed to reduce the risk of falling and/or aid in fall prevention.

However, falls while wearing the exoskeletons are a significant risk in using these

devices [8]. Current FDA-cleared exoskeletons use different strategies for dealing with

potential falls and are indicated for use with a trained companion. The effectiveness

of these strategies is not studied and is still unclear. Some systems utilize kinematic

response assessments to detect fall events based on accelerometers, magnetometers, or

joint angles. The Indego and Ekso exoskeleton systems detect falls in real-time by

checking for excursions in kinematic variability beyond certain limits. In the case of

the Indego device, movements beyond a set threshold will trigger corrective postural

movements to reduce the risk of injury [8]. However, while other studies have examined

fall risk and incidence [9], tested exoskeletons during perturbations [10],[11], or even

developed positioning algorithms to promote safer falls [12], very few appear to both

detect and respond to these falls or perturbations. There was only one study that

was identified which detailed an exoskeleton system with built-in perturbation or fall

detection and response. In this study, Monaco et al. utilized a micro-controller

to compare real-time kinematics with predicted walking values. Threshold reaching

discrepancies between the predictions and real values were used to apply corrective hip

torques to restore balance. Their detection algorithm was able to identify the lack of

balance resulting from slippages within about 350 ms of the event [13]. Nevertheless,

there are still drawbacks to this mechanism of fall detection; kinematic measures leave

minimal time between detection and the fall event. In these systems, given that the

use of electric motors with large gear reductions will have reduced response speed, early

detection of balance loss is critical. With this in mind, approaches that can identify and

act to correct balance loss earlier would be extremely beneficial.

Kinematic measures are not the only way of detecting fall events. Multi-sensory

information from visual, somatosensory, and vestibular systems acting on the cerebral

cortex, cerebellum, and brainstem have a significant role in postural corrections [14].
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These sensory signals might precede the latency of kinematic responses and could offer a

longer stimulus to fall interval within which to respond. Physical balance perturbations

elicit cortical responses called Perturbation Evoked Potentials (PEP). These PEP

can be detected using electroencephalography (EEG). A PEP generally consists of 3

components. The first component is a small positive wave (P1) at approximately 30-90

ms. This is followed by a negative peak at around 90-160 ms with a final, late response

(P2 and N2) around 200-400 ms [15]. These PEPs are typically observed by averaging

waveforms across many trials. However, if PEP could be detected from a single trial,

balance perturbations could be identified much earlier. This would afford considerable,

additional time to initiate preventative movements.

Studies examining perturbations during exoskeleton use with an EEG paradigm,

as well as the temporal relationship between signal modalities, are rare [16]. More

importantly, to our knowledge, no previous studies have evaluated the influence of

balance perturbations on EEG during exoskeletal suit use. Further understanding of

the influence of exoskeletons on physiological responses observed with EEG as well

as physical responses to perturbations is important. In this study, how different

perturbations during standing conditions modulated the brain activity was evaluated

and tested the possibility of detecting physical perturbations from single-trial EEG in

individuals wearing an exoskeleton.

2. Methods

2.1. Participants

Seven healthy participants (5 male) aged 18-32 participated in the study. The

experimental protocol was approved by the Institutional Review Board (IRB) at the

University of Houston, in accordance with the Declaration of Helsinki. The written

informed consent form was collected from each of the participants before the start of

the experiment.

2.2. Experimental Setup

Participants were fitted with a 64-channel EEG cap (ActiCap, Brain Products, GmbH,

Morrisville, NC) referenced to the ear lobes. 60 active AG/AgCL electrodes were placed

in the cap according to the modified 10-20 international system to record EEG signals.

Electrodes normally positioned at FT9 and FT10 were moved to replace the AFz and

FCz electrodes on the cap (ground and reference, respectively). In addition, electrodes

that were to be placed at TP9, TP10, PO9, and PO10 were instead used to measure

electro-oculography signals (EOG). Two electrodes were placed above and below the

right eye with the remaining two electrodes placed at the lateral canthus of each eye

to extract the eye-related artifacts. EEG/EOG data were recorded wirelessly using

the MOVE system at 250 Hz and amplified using the BrainAmp DC amplifier (Brain

Products, GmbH, Morrisville, NC).
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Surface electromyography (EMG) sensors were placed over the tibialis anterior

(TA), Medial Gastrocnemius (MG), Lateral Gastrocnemius (LG), and Soleus (S) muscles

of both legs, along with one sensor on the forehead and torso. EMG data were collected

wirelessly using the Delsys Trigno system (Delsys Inc., Boston, MA).

After set-up and electrode impedance measurements, participants were asked

to stand comfortably on a balance platform (Neurocom Balance Manager platform,

(NeuroCom, Clackamas, OR) for 2 minutes to acquire eyes open resting-state activity.

At the end of 2 minutes, subjects received a series of postural perturbations. This

consisted of a series of 32 constant (duration, period, and velocity) perturbations where

the platform generated maximal backward translations (displacement of 6.35 cm in

400 ms, i.e. velocity of 15.875 cm/s). This condition is referred to as the Random

Timing Condition (RTC), as the timing alone was randomized. The second postural

task consisted of 33 random/unexpected perturbations where the platform generated

forward/backward/tilted perturbations in a random order (Random Timing and Type

Condition - RTTC). Individual trials with the same parameters as the RTC trials were

embedded randomly into the RTTC condition. After 16 trials of RTC and RTTC,

respectively, a break of approximately 2-5 minutes was given to avoid fatigue. Each trial

lasted five seconds and the timing to perturbation onset was randomized in all trials to

avoid anticipation of when the perturbation would occur. All conditions were repeated

with and without the H2 exoskeleton (in passive mode with the joints decoupled)

to evaluate if PEPs would be altered in the presence of the mechanical constraints

introduced by wearing the exoskeleton. For every other participant, the order of trials

with and without H2 was reversed. The protocol is summarized in Fig 1.

Figure 1: Experimental protocol: the two conditions were repeated with and without the exoskeleton.

A 2-5 minute break was provided in between each of the blocks (RTC RTTC).

2.3. Signal pre-processing

The pre-processing steps used to process EEG, EMG, and the Neurocom data are

summarized in figure 2.

Both the EEG and EOG signals were bandpass filtered between 0.2 to 50 Hz to

remove low-frequency drift and minimize muscular artifacts. A 4th order zero-phase

Butterworth filter was used to avoid phase distortion. The high pass cut-off of 0.2 Hz was

selected from Tanner et al., which suggested high pass filtering above 0.3 Hz will distort

the ERP components [17]. Ocular artifacts were removed using the H-infinity-based
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Figure 2: Flowchart detailing the different pre-processing steps performed for each of the signal

modalities.

adaptive filter [18]. The gamma parameter was set to 1.1 and the q parameter used was

1e-11 from empirical testing. Data 1.2 seconds before and after the perturbations were

discarded and individual trials were concatenated together. Later, to remove any sudden

spikes in the EEG and improve Independent Component Analysis (ICA) decomposition,

Artifact Subspace Reconstruction (ASR) [19] with less conservative thresholds of 30-75

were used to reconstruct poor components in artifactual windows. The thresholds were

selected based on empirical evaluation and also by recommendations from Chang et al.

[20]. ICA decomposition was then performed using the Infomax algorithm to identify

and remove ocular, muscular, or bundle artifacts (artifacts caused by the physical pulling

of cable bundles). Here, a more conservative cleaning is performed to remove 26-

44 ICs across subjects. Ocular artifacts were identified by looking at topographical

distributions, power spectra with power localized in the delta/theta bands, as well as

the time-series data for repeatable ocular artifacts. Muscular ICs were identified by

examining the spatial weighting of the IC (localized in the temporal channels), power

spectra (looking at the increasing power in 30+ Hz) as well as time-series data for

spiking activity. The bundle artifacts were identified by the spatial weight of the IC

(alternating pattern for the 2 bundles). Any additional ICs (indicating electrode shifts)

were identified and removed. Representative examples of the ICs removed are provided

in the supplementary materials. All the pre-processing steps were implemented using

the EEGLAB library[21].
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EMG data were bandpass filtered with a passband frequency of 20 - 450 Hz using

a 4th order Butterworth zero-phase filter. Later, to extract the envelope, data were

rectified by computing the absolute value and passing through a second low pass filter

at 40 Hz. The envelope of the EMG was then resampled to 100 Hz to match with the

sampling rate of the kinematic data from the Neurocom. All three modalities were then

aligned to the perturbation onset in each of the trials.

2.4. Latency relationship between the signals

To study how electrophysiological and kinematic responses varied in response to the

perturbation, all the signals after baseline correction were trial averaged. This also

increased the signal-to-noise ratio. Averaging was done separately for each of the

conditions. The period between -500 ms to -200 ms was used to estimate baseline

correction values. Perturbation response in the first trial was consistently, significantly

larger than the succeeding trials, and thus were removed before averaging. The trial

averaged physiological and kinematic signals were aligned to the perturbation onset

to evaluate the latency difference between the signals. In the end, the grand average

response was computed by averaging the time series across all subjects and trials.

2.5. Detecting perturbations from single trials

A CNN was implemented to detect the presence of perturbations from 200 ms long

windows of single-trial EEG. Class 1 was composed of individual trial windows during

the baseline period (1200 to 500 ms) prior to the onset of perturbation. Class 2 consisted

of EEG segments between -200 ms until +500 ms post perturbation onset. Windows

of 200 ms from each of these classes were extracted in a sliding window manner with a

one-sample difference. The data were scaled by dividing by a value of 100 (µV). The

baseline period per trial was selected as class 1, instead of the resting state, to avoid the

model prediction being confounded by impedance change between the two segments.

It further ensures that internal states unrelated to the perturbations are comparable

across the classes.

To increase the sample size for the classifier, trials not involving the exoskeleton

were also included. Therefore, a total of 60 trials of RTC trials were used for training

the model. Trials were randomized and divided into train, test, and validation sets. 15%

of trials were divided into validation and 15% into the test set. The data was divided

based on trials and not by random sampling of all the windows. This was done to avoid

any potential data leakage due to the high level of overlap. This ensured that there

was no shared information between the three sets. A total of 5 such held out sets were

created for cross-validation to evaluate the generalizability of the model. In addition to

test accuracy, F-score was also computed for each of the folds.

The architecture for the model is summarized in Fig. 3. The input to the model is

the 200 ms EEG window (batch size x 50 samples x 60 channels). The model consisted

of 5 temporal convolution layers of 8 units each (3 x 1 kernel size with a stride length of
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1). A temporal pooling layer of 2x1 pooling dimension with a stride length of 2 was also

used after every pair of convolutional filter layers except the last block. These should

help with the trial-by-trial translational variance of the PEP components. The output

from these convolutional layers was flattened and fed into a dense, fully connected layer

of 16 hidden units followed by an output layer with softmax activation.

A dropout layer with alpha = 0.5 was added in between the dense layer and the

output layer to reduce overfitting. Except for the output layer, the model utilized ReLU

as the activation function. An Adam optimizer [22] with a learning rate of 0.0001 was

used to train the model. A batch size of 32 and epoch length of 100 was set. An early

stopping condition was set to avoid the model from being overfitted. This stopped the

training if the validation loss did not improve in 5 consecutive epochs. A re-initialized

independent copy of the same model architecture was used for each fold and subject.

The proposed model was implemented in python 3.6 using keras 2.15 [23] wrapper using

Tensorflow [24] backend.

The model architecture was selected to better facilitate the GradCAM algorithm in

identifying relevant channels. Most currently available models use a spatial filter in the

early stage of the architecture. If spatial filters are used early on, the deeper layers can

only see a mixed channel (time x number of filters dimension) representation. GradCAM

will not be able to identify the relevant channel distribution. Here, the emphasis was

put on explaining the model decision to ensure the model is indeed learning from

relevant components and not driven by irrelevant signals. To ensure that prioritizing

explainability during architecture selection did not impair decoding performance, the

performance of the model was compared with the DeepConvNet architecture [25]. The

original paper that proposed the DeepConvNet architecture used a 2-second long EEG,

sampled at 256 Hz as input. For the DeepConvNet, to account for the difference in

dimensions the architecture hyper-parameters were modified to make it compatible with

our data. In this study, three blocks were used instead of four as the window size is

not long enough to accommodate the 4th block. Additionally, to evaluate the impact of

denoising, the process was repeated by training the model used in this study on EEG

data prior to ICA cleaning instead of the denoised EEG.

Figure 3: Model architecture: Each block correspond to different types of layers in the model. The

dotted line is to illustrate the dropout operation during the training phase aimed at

reducing overfit. During inference, all units were retained.



8

2.6. Explaining the CNN model decision

The model decision explanation was carried out using the GradCAM method [26].

GradCAM is a class-specific explanation technique that identifies relevant regions in

the input that the model used to make the prediction pertaining to a specific class.

The algorithm is explained in Selvaraju et al. 2017 [26]. GradCAM is a generalization

for Class Activation Map (CAM) as CAM limits the CNN to require a global average

pooling layer at the end of the convolutional blocks. GradCAM on the other hand does

not require this. GradCAM computes the gradient of the score of the class of interest

with respect to each of the feature map activations of the penultimate layer being

considered. These gradients are then global average pooled to serve as weights for the

particular feature map. A weighted sum of the feature map activations with respect to

these weights is then computed. These are then are passed through a ReLU operation to

consider only positive values as they contribute to making the correct prediction. Here,

the penultimate layer used is the convolutional layer L5 to learn channel relevancy. From

the model explanations, time-averaged GradCAM is computed to identify the relevant

channels per window.

Next, k-means clustering was performed on the model decisions. All the correctly

predicted data points across all subjects from the best performing fold (combined

validation and test set) were fed into the clustering algorithm instead of visualizing

hand-selected examples to avoid bias. The distance measure used was squared euclidean

with the maximum number of iterations allowed set to the total number of samples

present. The optimal cluster number was selected using the elbow method. K-means

was evaluated for a variable number of clusters ranging from one to 100. The total

within-cluster sums of point-to-centroid distances were computed for each of the K

values. The K values that corresponded to the knee of the curve were selected. Instead

of manually selecting the knee point which could be subjective, the Kneedle algorithm

was used to detect the knee [27]. The parameter S was set to 0 as recommended in

the offline setting in the original paper[27]. The process was repeated 5 times and the

average K values were chosen for the final k-means clustering. The cluster results were

then evaluated to assess whether the model was learning from the PEP components and

not being driven by artifacts. The process was repeated on separate models trained on

pre-processed EEG as well as raw EEG without ICA cleaning.

2.7. Post-hoc test to evaluate model explanation with traditional signal processing

approaches

To evaluate how the network dynamics evolve with time during the PEP, a measure

of dynamic functional connectivity called phase difference derivative (PDD) [28] was

calculated for each trial. One of the more prominent models of the origin of ERP is

the phase reset model wherein resetting of phase of the ongoing oscillations cause the

generation of ERP [29]. We expect the PDD to quantify the dynamics of the various

PEP components across trials. PDD is a measure of the stability of phase difference
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between two signals. It computes the instantaneous phase of the signal based on the

analytic signal extracted from the Hilbert transform of each of the signals. For phase-

locked signals, the difference in phase remains constant across time, in which case the

derivative of that should be approximately zero. Taking the negative exponent of the

derivative further ensures that it is bounded between 0 and 1 with a value of 0 meaning

no coupling between the signals. The equation to estimate PDD is

PDDij(t) = exp(−|d∆Φij(t)

dt
|). (1)

Here, ∆Φij is the phase difference between signals i and j at time t. The PDD in

the alpha band was calculated by initially band-pass filtering the signal using a 4th order

zero-phase butter worth filter in the band (8-13 Hz). The PDD was estimated with a

center frequency of 10 Hz and a window size of 128 ms. The window size was selected

such that it contains at least one cycle of the lowest frequency of interest (8 Hz). The

measure was estimated from seven channels. Six of the channels were relevant to the

task (based on model explanations from CNN). A seventh channel, which we expected

to be task-independent (TP7) was also evaluated. The PDD was baseline corrected

(w.r.t. -500 ms to -200 ms) to further remove any residual connectivity across channels

that are not task-dependent. The grand average ERP and PDD were estimated from

each of these channels using the same procedure as described in the section above.

2.8. Continuous decoding of COP from EEG

The predictive power of EEG to continuously decode the COP variations in response to

perturbations was then evaluated. Gated Recurrent Units (GRU) were used to decode

the COP values. Considering the perturbations were solely a backward translation, only

the y component of COP was decoded as it had the largest modulations. To evaluate the

ideal model parameters, a hyperparameter search was performed by varying the number

of layers (1 to 3) and the number of units per layer (8, 16, 32, 64, 128, 256, 512, 1024).

This was followed by a dense layer with a ReLU activation function and the number

of units equal to that of the GRU units. The dense layer was then connected to the

output layer with a linear activation function. To evaluate the decoding performance,

the coefficient of determination (R2 score), Pearson’s correlation coefficient (R-value)

and mean squared error (MSE) metrics were used [30]. All of these were implemented in

python using the Scikit library [31]. Similar to the classification model, 70% of the trials

were divided into training, 15% for validation, and 15% for testing. The GRU model

was trained and tested on five such splits to evaluate generalizability. Here, unlike the

classification model, EEG from 1.2 seconds prior to perturbation onset until 1-second

post perturbation onset was used. Separate models were trained for each combination of

participant x number of layers x number of GRU units x folds. Predicted and actual COP

values were evaluated using the measures on the validation set across all 5 sets to identify

the optimal model hyperparameters. Upon identifying the optimal hyperparameters for

the model with minimal computational cost, the optimized model was evaluated on the
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test set to determine final performance values. The models were trained using the Keras

library with the TensorFlow backend. The initial learning rate was set to 0.001 with

the model weights optimized using Adam optimizer [22]. The batch size used was 128

and trained for a maximum of 200 epochs with an early stopping condition of stopping

the training if the validation loss did not improve in 5 consecutive epochs. The GRU

was trained to minimize the mean squared error between the actual and predicted COP

values. To further evaluate how the model generalized when the person was not only

blind to the timing but also the type of perturbation, trials with the same type of

perturbations that were randomly present in the RTTC sessions were also tested.
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3. Results

3.1. Latency relationship between the signals

Fig 4 depicts the grand average response across channels during the exoskeleton RTC

condition. The top row shows the grand average PEP components in the Cz EEG

channel. All the previously reported components of the PEPs including P1, N1, and

P2 are retained while wearing the exoskeleton. In addition, the P1 peak (75 ± 8 ms)

and N1 peak (137 ± 12 ms) precedes the peak in EMG (MG: 195 ± 27 ms; LG: 182 ±
19 ms; TA: 180 ± 14 ms; S: 181 ± 13 ms) which again precedes the peak in the COP

(365 ± 22 ms). The peak of COP is the point at which the participants start initiating

the return to the original position. This indicates that EEG contains discriminatory

information much earlier than the kinematic response which could be used to detect the

balance perturbations.

Figure 4: Between subject grand average latency difference between different electrophysiological and

kinematic responses associated with balance perturbation while wearing the exoskeleton.

The muscles shown are from the left leg with the following abbreviations: MG (medial

gastrocnemius), LG (lateral gastrocnemius), TA (Tibialis Anterior), S (Soleus).
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Table 1: Cross validated performance metrics evaluated on the test set; all numbers are in

percentages; Raw: model trained on EEG without ICA denoising, Clean: model trained on

ICA cleaned EEG, DCN: DeepConvNet trained on ICA cleaned EEG.

Sub Accuracy F-score

Raw Clean DCN Raw Clean DCN

S1 79.3 ± 4.1 75.2± 3.6 67.3 ± 2.5 79.2 ± 4.0 75.0 ± 3.4 65.4 ± 2.1

S2 72.2 ± 5.4 77.6 ± 6.8 73.3 ± 3.1 72.1 ± 5.4 77.5 ± 6.8 72.7 ± 3.7

S3 77.2 ± 11.5 75.5 ± 3.7 67.0 ± 5.5 77.0 ± 11.6 75.4 ± 3.7 65.3 ± 7.2

S4 84.1 ± 1.7 70.3 ± 5.4 65.0 ± 5.0 84.0 ± 1.6 69.2 ± 7.1 64.0 ± 4.9

S5 74.9 ± 4.2 71.4 ± 4.1 70.5 ± 5.2 74.5 ± 4.2 71.1 ± 4.1 69.9 ± 5.6

S6 81.7 ± 3.9 80.0 ± 1.8 79.8 ± 2.6 81.6 ± 3.9 79.8 ± 1.9 79.6 ± 2.6

S7 76.9 ± 5.3 75.3 ± 4.8 70.7 ± 4.1 76.6 ± 5.2 75.2 ± 4.7 69.7 ± 3.9

Avg 78.0 ± 5.2 75.0 ± 4.3 70.5 ± 4.0 77.9 ± 5.1 74.7 ± 4.5 69.5 ± 4.3

3.2. Detection of balance perturbation using a convolution neural network

The capability for CNN to detect the PEP components and other underlying neural

representations from single trials alone in a data-driven manner was tested. The cross-

validated results are summarized in Table 1. Overall, all the subjects obtained above

chance level (∼ 50%) classification scores. A cross-validated mean test F score of 74.7 ±
4.5 % was obtained. Subject 4 had the lowest F score of 69.2 ± 7.1 % whereas subject

6 obtained the highest F score of 79.8 ± 1.9 %. The same model was tested on EEG

without ICA denoising (Raw) and that model achieved a higher decoding accuracy (F

score = 78.0 ± 5.2).

DeepConvNet yielded a mean test F score of 69.5 ± 4.3. Compared to

DeepConvNet, our model performed better. However, we emphasize that the study

do not claim superiority for the architecture. Instead, this is evaluated only to show

that focusing on architecture by prioritizing model explanation did not compromise

model performance. To make the comparison fairer, randomization of the trials was

made consistent for all models by assigning the same seed per fold.

3.3. Explaining the CNN model decision

The optimal K value to perform the k-means on the model explanations was identified

as 11 for the model trained on clean EEG and 14 for the model trained on EEG without

ICA cleaning. Fig 5 shows the clustering results on the best-performing fold for both

cases. Fig 5.a summarizes the clustering performed on the explanations from the model

trained on cleaned denoised EEG. Fig 5.b corresponds to the explanations from the

model trained on the raw EEG without ICA cleaning. The top row in both cases shows

the mean relevancy score for the channels in each of the identified clusters. The middle

row represents the distribution of window latency relative to perturbation onset (w.r.t.

the last sample in each window). The distribution was normalized for visualization
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purposes. The third row shows the contribution of the examples in each cluster from

each of the 7 participants.

From Fig 5.a, it can be seen that none of the clusters were weighing in on the

periphery channels, which are often strongest if driven by artifacts. Almost all clusters

were focusing on the channels in the motor, parietal and pre-motor regions to arrive

at the decisions. From these, clusters C3 and C8 are localized in the Cz channel and

are centered around the time when N1 peaks. Similarly, the parietal channels become

more relevant both in the early and late stages of the perturbations (C1, C6). The

clusters localizing in the frontal channels (C7, C10) are centered in the latter half of the

perturbation. In multiple clusters, the model is focusing on a broader range of channels

but is still centered around the motor regions (C1, C2, C4, C11). The largest cluster,

C5 had contributions from both the central as well as the parietal channels. Overall,

in evaluating the spatial map distribution, the response is found to be highly dynamic,

involving multiple brain regions varying over time.

To further verify that the model explanation was not biased against detecting

artifacts and that the pre-processing was reliable and significant, the process of training

and explaining the model decisions was repeated on EEG without ICA cleaning. The

clustering results of data with artifacts are summarized in Fig 5.b. Even though the

model trained on data without ICA cleaning achieved higher performance (F-score: 78

± 5.2), evaluating the model explanations, it was observed that the model was learning

the artifacts for decoding purposes. The model learned to detect the bundle artifacts

indicated by alternative localized channel relevancy (C3, C6, C13) as well as started

giving more relevance to the peripheral channels (C3, C5, C8, C10, C11, C12). These

were absent in our pre-processed data.

3.4. Post-hoc test to evaluate model explanation with traditional signal processing

approaches

The variability of the dynamic measure of the functional connectivity ∆PDD is shown

in Fig 6. The channels over the parietal and parietal-occipital lobe that are heavily

reported to be involved with sensory processing have increased connectivity in both the

start and end of the perturbations. The variability in the motor channels particularly

the Cz is centered around the N1 peak. The FCz on the other hand has an increase in

connectivity relative to other channels soon after the N1 peak as well.

In addition, the connectivity strength of the Cz, C2, and FCz channels is high w.r.t.

the frontal and parietal channels prior to the perturbations suggesting anticipatory

mechanisms. TP7 which is task-irrelevant does not appear to have significant activity

throughout the duration of interest.
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Figure 5: Clustering result of the model explanations from the highest performing fold.
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Figure 6: The difference in alpha band PDD w.r.t. -500 to -200 ms prior to the trials. Each column

corresponds to connectivity w.r.t. one specific channel. The top row indicates how the

alpha band ∆ PDD of all other channels w.r.t. the channel of interest changes with time.

The bottom row is a grand average PEP for the channel of interest.
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Table 2: GRU decoder performance metrics on the test set.

Subject Correlation

(RTC)

R2-Score

(RTC)

Correlation

(RTTC)

R2-Score

(RTTC)

HS1 0.45 ±0.08 0.13 ±0.13 0.33 ±0.06 0.07 ±0.06

HS2 0.76 ±0.03 0.54 ±0.07 0.81 ±0.02 0.65 ±0.03

HS3 0.71 ±0.06 0.47 ±0.14 0.8 ±0.02 0.63 ±0.04

HS4 0.56 ±0.06 0.29 ±0.08 0.37 ±0.06 0.07 ±0.06

HS5 0.81 ±0.05 0.64 ±0.09 0.76 ±0.04 0.56 ±0.06

HS6 0.85 ±0.06 0.7 ±0.1 0.74 ±0.02 0.51 ±0.02

HS7 0.78 ±0.04 0.59 ±0.08 0.64 ±0.03 0.34 ±0.06

mean ±s.d. 0.7 ±0.06 0.48 ±0.1 0.64 ±0.03 0.41 ±0.05

3.5. Continuous decoding of COP from EEG

From the model explanation results and the PDD analysis, it was observed that there are

dynamical changes in response to perturbations with time. Additionally, from the PEP,

it is clear that distinct PEP components exist at varying latencies. With this in mind,

the possibility to estimate the variation of COP associated with balance perturbation

from EEG was tested. Initially, the cross-validated grid search identified the optimal

hyperparameters for the GRU architecture. Fig 7. A) shows the distribution of R-value,

R2 value, and MSE losses for all combinations of the hyperparameters used. After

the hyperparameters were selected based on the performance metrics evaluated on the

validation set, the optimized model was tested on the held-out test set. The performance

measures are summarized in table 2. Evaluating the violin plot, the number of layers

was found to be not critical here. The performance initially increases with the number

of units but starts decreasing/saturating after 256 units. Considering this, the number

of layers was chosen as one and the number of units to be 256. The model was then

trained using these architectural choices.

The final optimized model yielded an across subject mean R-value of 0.7 ± 0.06, R2

score of 0.48 ± 0.1 on the test set ( RTC - random timing alone), and a mean R-value

of 0.64 ± 0.03, an R2 score of 0.41 ± 0.05 on the RTTC test set (random timing +

type). Participant 6 had the highest decoding performance with an R-value of 0.85 ±
0.06 and an R2 value of 0.7 ± 0.4 on the test set. Participant 1 had the lowest decoding

performance with an R-value of 0.45 ± 0.08 and an R2 value of 0.13± 0.13 on the test

set. Fig 7b. shows the continuous sample-by-sample decoder results corresponding to

the best fold from the worst-performing participant (S1). Fig 7c. shows the continuous

point-by-point decoder results corresponding to the best fold from the best performing

participant (S6).
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Figure 7: a) Performance measures evaluated on the validation set for varying hyperparameters for

the GRU architectures. Each row corresponds to different evaluation metrics; b) decoded

COP from the best performing subject (test set, RTC condition); c)decoded COP from the

lowest-performing subject (test set, RTC condition).

4. Discussion

This study investigates whether the PEP components would be preserved when a user

wears an unpowered exoskeleton. It was found that all the components of the PEP

were preserved and that the latency of the P1 and N1 wave preceded that of EMG and
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kinematic response peaks. This suggests the P1 and N1 components are a viable signal

for fall prediction and prevention in exoskeletons. Fall detection in exoskeleton systems

is limited and latencies are often too long to be pragmatic in real-world applications. A

system detailed in Monaco et al. [13] identified balance perturbation while walking at

350 ms based on hip joint angles. It was also observed that the kinematic response from

balance perturbation (while standing) peaked at approximately 350 ms. Comparatively,

muscular activity peaked earlier than the COP. Also, PEP components appear as early

as 75-137 ms in response to the perturbations. This provides us with a much longer

window to perform actions to prevent/reduce fall-related injuries than relying exclusively

on temporal kinematic features of the perturbation response.

In a recent review, Varghese et al. suggest that P1 is the earliest non-specific

cortical response to a perturbation [15]. They argue that the P1 is not related to

the context of the balance perturbation task, and does not contain information related

to the predictability of the perturbation or whether the perturbations are internally

or externally induced. It is the earliest exogenous cortical response driven by the

somatosensory input typically in the range of 0.2-12.7 µV [15]. Compared to P1, N1

is a significantly larger component distributed across the central, frontal, and parietal

channels at a latency of 100-150 ms [32],[33]. Prior studies have reported the N1 peak to

be as high as 60 µV, localizing in the Cz or FCz channels [32]. Unlike P1, N1 potential

has been shown to not just be influenced by afferent signals. Instead, it is also influenced

by the predictability and difficulty of the balance task, [34],[35] as well as the presence

of competing cognitive tasks [36]. This suggests a higher-order cognitive processing

role [33]. Typically, EEG data are trial-averaged to improve signal-to-noise ratio from

event-related potentials. After confirming that PEP components were preserved while

wearing the exoskeleton, it was determined that perturbations can also be detected from

single-trial EEG. This is a crucially important step towards the real-time detection of

perturbations. In real-world applications, decoding must occur in real-time. Studies

decoding PEP components from single trials are rare and only find one study examining

the feasibility was identified [16]. However, that particular study was conducted in a

seated condition with a whole-body perturbation and did not examine standing or the

use of an exoskeleton. No previous studies that target decoding PEP components from

single trials in neither standing nor with an exoskeletal suit were found.

Initially, a CNN model was used to check if the presence of balance perturbation

could be detected from single trials. The architecture of the CNN-based decoder was

selected considering the usability of the GradCAM approach. GradCAM was chosen

specifically because many of the other saliency methods were mentioned to be unreliable

and GradCAM was known to be one of the most robust model explanation methods

[37]. One point to note is that ideally GradCAM should be applied to the final layer.

Here, since we are interested in channel relevancy we use the layer before the last

convolutional layer. The performance was compared w.r.t the DeepConvNet [25] model.

However, this study does not claim the superiority of the used model architecture or

the decoder. The optimization of hyperparameters for both models was not performed,
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as that is outside the scope of this study. Here, the evaluation is done to confirm the

existence of predictive power to detect balance perturbation on a single trial basis and

further ensure the model architecture used for prioritizing explainability is comparable

to existing architectures. Subject S4 had the lowest decoding performance. During

the experiment, this participant reported having congenital nystagmus. There exist

a possibility that the PEP might have been corrupted by sudden eye movements and

gotten removed during the pre-processing or there may be a difference in the PEP

response either of which could cause a reduction in decoding performance.

It was also demonstrated that the CNN model used to detect perturbations was

primarily driven by PEP components and not by artifacts. Unlike prior studies that

reported few hand-selected examples to demonstrate model explanation, a clustering

approach was employed in this study to visualize the model explanation of all the

windows from the test and validation set. Model explanations in deep learning studies on

EEG are rare. There are only a few (∼ 1.5%) studies that explore the interpretability

or explainability of the model used [38]. It is very important to assess whether the

outputs of deep learning models are driven by artifacts or PEP signals. This is even

more critical considering that the majority of the published studies using deep learning

methods currently do not handle the artifacts. A recent review by Roy et al. reported

that only 23% of studies performed artifact handling [38]. A similar review by Craik et

al. [39] reports 63 % of studies did not preprocess the EEG for classification tasks. As

seen from this study, even though the prediction score is higher when using the model

trained on EEG without ICA cleaning, many of the decisions were driven by artifacts.

Examining the outputs gave further confidence that the artifact handling pipeline

was successful. When the model was trained on data that was not pre-processed, it was

biased by artifacts as shown in figure 5b. The CNN started learning from bundle artifacts

(C3, C6, C8, C13) and also emphasized peripheral channels more prominently (C5, C8,

C10, C12). However, these were not present when the pre-processed data was used to

train the model. The study thus highlights the need for providing model explanations in

deep learning studies involving EEG, as context is important to assess the main factors

behind different decisions. This study also shows how using the data-driven approach

coupled with model explanations can help reduce the number of channels required for the

decoder. Here, the number of channels was reduced from 60 to 8 without compromising

the decoding accuracy.

In addition, from the model explanations shown in 5a., it was observed that

depending on the position of the window being considered relative to the perturbation

onset (middle row), different channel combinations become most relevant. Channels in

the parietal, and occipital regions were the most relevant in the earliest and the latter

part of the perturbation onset (C1 and C6). Between 100-300 ms, the model shifted

relevance to motor channels (C3, C5, C8). From 200-300 ms, the model was prioritizing

the parietal and fronto-motor channels (C1, C2, C4, C7, C10, C11). This suggests the

dynamic recruitment of different brain regions in response to the balance perturbation.

The model explanations are in agreement with prior works that demonstrated the
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significance for these regions in balance perturbation tasks [40],[15],[41]. Further

exploring these dynamics by computing a measure of dynamic functional connectivity

(PDD) similar effects were observed. Specifically, the nodal connectivity was higher

in the occipital-parietal region in the early stage of the perturbations, shifting to the

motor, then to frontal, and back to the parietal channels.

Given these dynamics, it was expected that the EEG would have the information

to be able to continuously decode the instantaneous COP variation. This was validated

using a GRU model to decode continuous COP responses from single-trial EEG. It was

demonstrated that the GRU model was able to decode, on a sample-by-sample basis, the

COP variability from EEG alone for all participants. Evaluating the hyperparameters,

it was observed that the number of layers did not contribute significantly to the model

performance, which is in agreement with prior work [30]. However, the number of

hidden layer units does impact the model significantly. This effect appears most

noticeably in the variance across different folds. Comparing the three metrics, a

U-shaped relationship was observed between the number of units and the decoding

measures, with the performance peaking at 128 or 256 units. The variance was higher

with a smaller number of units, suggesting lower predictive power in small models

yields poor performance on out-of-distribution data. The variance again increased for

large values of hidden units, mostly indicating the tendency towards overfitting to the

training data. The selection of an appropriate number of hidden units per layer seemed

to be the most critical model hyperparameter. Additional tests were conducted on

similar types of trials (i.e. the backward perturbations described above) which were

randomly introduced in between variable types of perturbations that included toes

up, toes down and forward translations. There was a slight reduction in performance

in this condition potentially resulting from additional cognitive processes required to

anticipate both the timing and the type of perturbations. The decoding score across

all participants exhibited good performance (R-value greater than 0.5), except for

participant 1. Participant 1 consistently opted for a specific, non-stereotypical strategy

to counteract the perturbation. However, it was noticed that the strategy used by

this participant was not working effectively as the participant had the greatest difficulty

restoring postural equilibrium. It is possible that the strategy chosen by this participant

conflicted with the variable nature of the perturbation, and led to poor decoding.

In summary, relevant components in PEPs were detected as early as ∼ 75-137 ms

after the onset of a mechanical external perturbation. These components preceded

both the peak in EMG activity (∼ 180 ms) and the COP data (∼ 350 ms). It

was observed that the perturbations could be decoded from single-trial EEG using a

CNN model. Also, it has been demonstrated that the model was driven primarily by

relevant components in the PEP to infer the predictions and not by artifacts. The

model explanations further aligned with the dynamic functional connectivity measure

estimated using PDD. Moreover, the feasibility of decoding continuous COP values from

the EEG using a GRU model was established. Overall, the findings suggest that the

EEG signals contain short-latency neural information related to an incoming fall, which
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may be useful for developing brain-machine interface (BMI) systems for fall prevention

in neurally-controlled robotic exoskeletons.

5. Acknowledgments

This project was sponsored by the NSF IUCRC Building Reliable Advances and

Innovation in Neurotechnology (BRAIN) Center Award (NSF Award 1650536). This

work was completed in part with resources provided by the Research Computing Data

Core at the University of Houston. In addition, we would like to thank Dr. Manuel

Cestari for assisting with the data collection and preparing the IRB documents. He also

contributed towards writing codes to automate data curation process. We would also

like to thank Nina Dorfner, Peijun Zhao, and Chase Philip for their contributions to the

project.

6. Author contributions statement

J.L.C-V, G.E.F., and C.L. conceived the experiment(s), C.L. and J.L.C-V designed the

experiment, A.S.R., C.M., I.J. conducted the experiment, A.S.R analyzed the EEG data

sets supervised by J.L.C-V. C.M. wrote the code for analyzing the EMG and COP data.

All authors reviewed the manuscript.

References

[1] Organization WH. Falls: fact sheet;. Available at https://www.who.int/news-room/fact-

sheets/detail/falls.
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