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Abstract: Surface electromyography (EMG) is a valuable 
tool in clinical diagnostics and research related to human 
neuromotor control. Non-linear analysis of EMG data can 
help with detection of subtle changes of control due to 
changes of external or internal constraints during motor 
tasks. However, non-linear analysis is complex and results 
may be difficult to interpret, particularly in clinical envi-
ronments. We developed a non-linear analysis tool (SYN-
ERGOS) that evaluates multiple muscle activation (MMA) 
features and provides a single value for description of 
activation characteristics. To investigate the respon-
siveness of SYNERGOS to kinetic changes during cyclic 
movements, 13  healthy young adults performed squat 
movements under different loading conditions (100%–
120% of body weight). We processed EMG data to generate 
SYNERGOS indices and used two-way repeated measures 
ANOVA to determine changes of MMA in response to load-
ing conditions during movement. SYNERGOS values were 
significantly different for each loading condition. We con-
cluded that the algorithm is sensitive to kinetic changes 

during cyclic movements, which may have implications 
for applications in a variety of experimental and diagnos-
tic settings.

Keywords: electromyography; level of determinism; multi-
ple muscle activation; recurrence quantification analysis.

Introduction
Human motor control is a highly complex feature of the 
human body, which involves a vast number of mecha-
nisms and interactions at various levels. To study motor 
control at its very core, it is necessary to understand how 
the central nervous system (CNS) generates movement, 
and how multiple processes are affected by interactions 
with the environment or by a variety of pathologies or 
aging [2, 4, 5, 6, 16, 37, 40, 43].

One approach to a better understanding of motor 
control is based on foundations developed by researcher 
Nikolai Bernstein, who presented the idea that the CNS 
organizes the large number of degrees of freedom (DOF) 
associated with simple or more complex movements [14, 41, 
42]. DOF is defined as the number of ways that the body can 
perform a vast number of translational or rotational move-
ments. Bernstein proposed that orchestration in the neuro-
muscular system happens through processes that integrate 
co-activation of neuromuscular units in concert to reduce 
the number of DOFs that require independent control [5, 37–
39, 44]. This multiple muscle activation (MMA), e.g.in form 
of modulated muscle synergies is important for natural 
behaviors [5, 7, 8], e.g. in postural control [38, 39].

Biological systems are explained by dynamics, 
which are not limited to chaos or nonlinear behaviors. 
This becomes crucial during analysis of physiological 
signals, which explains why researchers should use dif-
ferent approaches (linear and nonlinear) to investigate 
the changes in the system. It has long been postulated 
that physiological systems inherently depict aperiodic 
behaviors. The advancement in computer science and the 
development of a mathematical framework of nonlinear 
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dynamics led to the application of nonlinear tools to inves-
tigate the changes in the state of the physiological systems 
[45]. Therefore, the variability in the systems is no longer 
considered a pure, random process, explaining the com-
plexity of rhythmical processes in the system. The high sen-
sitivity of nonlinear tools to the changes in initial conditions 
of physiological systems revealed a deterministic pattern 
in the noisy signals [1, 34]. For an objective quantification 
analysis of muscular activation, surface electromyography 
(EMG) has shown value in a large number of application 
areas in research and clinical settings [2, 16], e.g. in inves-
tigations related to muscular activation strategies, impact 
of external factors and internally generated movement 
goals [2]. EMG signals are collected as discrete time domain 
signals, and nonlinear tools are applied to investigate the 
evolution of this time-series. Several nonlinear tools have 
been employed to explain different aspects of the behavior 
of EMG signals and to compare the outcome with the tradi-
tional linear analysis tools [11, 13, 25, 31, 47].

With increasing knowledge regarding chaotic and 
stochastic components in biological systems and human 
motor control, it becomes obvious that traditional linear 
EMG tools (e.g. integrated EMG and frequency analysis) 
cannot assess control completely. Nonlinear analysis is 
more responsive regarding subtle changes in neuromuscu-
lar activation such as when facing small external changes 
to constraints [9–11, 13, 23, 25, 31, 47]. Despite non-linear 
assessment tools being valuable, it is important that data 
sets obtained through such tools are understandable and 
provide meaningful results. Especially for clinical pur-
poses, there is a need for non-linear analysis tools that 
provide sensitive evaluation of neuromuscular patterns, 
while being straightforward and easily interpretable.

To address this issue, a computational algorithm we 
called “SYNERGOS” was developed, which employs estab-
lished non-linear EMG analysis tools, specifically recur-
rence quantification analysis and measure of determinism. 
The computation for SYNERGOS, which has been presented 
in detail before [29], combines the outcome of non-linear 
analysis to generate a single quantity to describe MMA 
characteristics, whereas time-variant and time-invariant 
EMG signal features are assessed. To evaluate the appli-
cability of the presented analysis tool, we utilized SYN-
ERGOS in a variety of settings and with different healthy 
and patient populations. We showed that SYNERGOS is 
sensitive to motor control changes associated with increas-
ing gait speed [29]. The algorithm is also sensitive to MMA 
changes that are present in Parkinson’s disease (PD), and to 
the neuromuscular modifications that are associated with 
specific PD medication [27]. Additionally, the method’s gen-
eralizability has been demonstrated before [28]. However, 

it is not yet clear if the method is sensitive to changes in 
muscular loading and associated neuromuscular control 
changes in cyclic movements. In this study, we aimed to 
investigate the effects of different muscular loading char-
acteristics (100%–120% of body mass) on SYNERGOS 
indices in healthy younger individuals performing squats 
to determine if the tool is sensitive to MMA changes due to 
kinetic changes in cyclic movements. We hypothesized that 
changes would be reflected in SYNERGOS values for MMA, 
which would provide evidence for the value of the algo-
rithm as a valuable neurophysiological assessment tool.

Methods
Subjects

The experiment was approved by the University of Houston Commit-
tee for the protection of human subjects (CPHS). All participants gave 
informed consent before participating in the study. Thirteen recrea-
tionally active individuals (five males, eight females) participated in 
this study. Eligibility for participation was based on the following 
criteria: (1) no history of neuromuscular disorders; (2) no history of 
traumatic or chronic injuries within the past year; (3) age range of 
18 to 40 years; (4) body mass index (20–25). Prior to participation, a 
physical activity readiness questionnaire (PARQ) was used to deter-
mine whether there were any muscular or neural limitations that 
might have an influence on the outcome of the experiment.

Apparatus

All experimental trials were performed while subjects were standing 
on an instrumented treadmill TM-07-B (Bertec Corporation, Columbus, 
OH, USA). A harness system was installed in a custom-made metal 
frame to support subjects during squat movements. Surface EMG sig-
nals were collected using six preamplifier bipolar active electrodes 
(EMG preamplifier, Type No: SX230, Biometrics Ltd., Gwent, UK) with 
a fixed electrode distance of 20 mm placed on the rectus femoris (RF), 
tibialis anterior (TA), lateral gastrocnemius (GA), soleus (SO), vastus 
medialis (VM), and biceps femoris (BF) of the right leg, and affixed 
with double-sided tape and athletic wraps. Electrodes were connected 
to a DataLINK base-unit DLK900 of the EMG acquisition system, which 
was connected to a PC using a USB cable. To achieve acceptable imped-
ance levels, the skin over the location of each electrode was shaved (if 
necessary) and cleaned with alcohol swabs.

EMG data were collected at 1000  Hz and passed through an 
amplifier with the gain set at 1000. The amplification bandwidth 
was 20–460 Hz (input impedance = 100 MΩ, common mode rejection 
ratio >96 dB (~110 dB) at 60 Hz). A zeroing reference electrode was 
placed above the right lateral malleolus, and was secured with elas-
tic wrap and tape. The electrodes were not removed from the subjects 
until all data collection was completed.

A 12-camera motion capture device was used to collect three-
dimensional kinematics data from reflective markers, which were 
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placed on the right and left hip, knee, ankle, heel, and toe at 200 Hz 
(Oxford Metrics, Oxford, UK). The collected kinematics data was used 
to identify each squat cycle by detecting the maximum and mini-
mum hip location (maximum flexion and extension) for each squat. 
A Matrix MR-500 metronome was used to help subjects to control the 
speed of knee extension/flexion (Quartz Inc., Mahwah, NJ, USA), and 
an electronic trigger was used to synchronize EMG and kinematic data.

Protocol

Upon arrival at the laboratory, participants performed 10  min of 
warm-up exercises, which included muscle stretching and light aero-
bic activities (e.g. jogging). Next, participants were trained to per-
form a squat motion consisting of knee flexion to 75° beginning from 
the anatomical position (0° corresponding to full extension) and a 
return to full extension. Flexion was controlled by a knee orthotic 
that restricted movement to 75°. Each squat lasted for approximately 
three seconds: 1.5  s for knee flexion and 1.5  s for knee extension 
 (Figure 1). The subjects used a metronome to control the speed of 
knee extension/flexion. Prior to data collection, participants were 
familiarized with a weight vest used to increase muscular loading 
during experimental trials by having them perform two sets of five 
repetitions with the weight vest adding 20% to their baseline body 
weight. During data collection, the subjects performed a set of five 
squats at the assigned loading levels (100% (BW), 110% (BW + 10%), 
and 120% (BW + 20%) of body weight). The order of loading levels 
was randomized prior to data collection for each participant. After 
each set, participants were given a minimum of 5-min rest [18] to 
avoid potential effects of muscular fatigue.

Data processing

EMG and kinematic data were processed using a customized Matlab 
script (Mathworks, USA R2010b). The detailed specifications of each 
processing step are provided in the following sections.

Recurrence quantification analysis (RQA) and determinism: All 
EMG signals were filtered using an 8th-order zero-phase Butterworth 
band-pass filter with a band frequency of 10–450 Hz [32], and with 
no further smoothing algorithm to optimize the exposure of collected 
EMG signals to RQA [3, 47]. A customized Matlab script was used to 
generate RQA values and determinism of the EMG signals, using a 
RQASP program [19]. Determinism of the EMG signal is a parameter 
which indexes the predictability or reproducibility of the signal, or 
the degree to which future states in a time series rely on present and 
previous states, it is correlated with motor unit firing and synchro-
nizations and can be altered by changing environmental and task-
related constraints [13, 24, 25, 45].

The initial input parameters of RQA (i.e. time delay, embedding 
dimension, and radius) were carefully selected based on the recom-
mended settings to minimize the effect of noise by employing mutual 
information and false nearest neighbor methodology [19].

To analyze the neuromuscular activities in each muscle during 
each squat loading condition, EMG data were clustered into five data 
bins [considering five squat repetitions (i.e. cycles) per squat con-
dition] defined as the epochs of recorded data between each knee 
flexion and knee extension (i.e. squat cycle). The percentage of recur-
rence, %REC and determinism %DET of each clustered EMG signal 
were calculated for all muscles within each loading condition for 
each subject. RQA measures the time-delayed reconstructed space 

Figure 1: Schematic overview of the experimental setup including marker positions for kinematic analysis and electrode locations for meas-
uring activity of rectus femoris (RF), vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), lateral gastrocnemius (GA), and soleus 
(SO).
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phase of the EMG signal; therefore, several parameters were defined 
prior to performing the analysis. By conducting the “False Nearest 
Neighbor” technique, the embedding dimension was selected [21]. In 
addition, the time delay was assessed using the mutual information 
(MI) technique [15]. In the MI technique, the first local minimum of 
the average mutual information was used to detect the time delay. 
In a recent study on EMG signals collected from healthy subjects by 
using a similar protocol, the embedding dimension was calculated 
as m = 6, and the time delay was 5 (τ = 0.005  s) [29]. The proximity 
radius was calculated as the rescaled “Maximum” unit of the dis-
tance matrix to keep the percentage of the recurring points in the 
recurrence plot (RP) of the signal at less than 2%, as has been recom-
mended by previous investigations [46].

Shuffled surrogates tests: To justify the use of higher level nonlin-
ear analysis in EMG signal analysis, shuffled surrogates testing was 
conducted on the EMG signals by performing 20 series of surrogate 
data using three algorithms. These series of surrogate data were gen-
erated for each set of muscles per each squat cycle [25, 30, 33, 36].

Signal processing

In this experiment, the SYNERGOS algorithm was used according 
to a specific protocol (Figure 2) to evaluate the change in the MMA 
due to altering load conditions during squat movements. The epochs 
were defined as the EMG signals calculated for each squat cycle (five 
squats per loading condition).

Statistical analysis

To investigate the responsiveness of SYNERGOS to detect the changes 
in MMA associated with altered loading condition (i.e. BW, BW + 10%, 
BW + 20%) and squat repetition (level 1 to 5), a two-way (repetitions 
by load) repeated measures analysis of variance with a significance 

level of p ≤ 0.05 was used. The analysis was conducted using SPSS 
17.0.1 (SPSS Inc., Chicago, Illinois, USA).

The unbiased population estimate of the effect size for the main 
factors was calculated using the equation (1):
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in which MSM represents the mean square value of the effect, MSR is 
the residual mean square value, k is the number of levels of the effect, 
n is the number of subjects, and MSBG is the mean square value for the 
between group effects [12] .

The effect size for pairwise comparison (i.e. “r”) was calculated 
using equation (2)
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in which r is the effect size and dfR refers to the degrees of freedom for 
the MS residual [12].

Surrogate testing

Discriminant statistics of the %DET and ApEn of the surrogate 
data are shown in Table 1. The results calculated for all subjects 
and gait cycles indicated that for all three types of surrogate tests 
(i.e. time shuffled, Fourier transform [FT], iterated amplitude 
adjusted Fourier transform [IAAFT]), the null hypotheses of equal 

EMG1

EMG2

EMGn–1

EMGn

%DET1

%DET2

%DETn–1

%DETn

RQA SYNERGOS Index

Figure 2: The schematic view of the SYNERGOS algorithm.
EMG signals are analyzed using the RQA, and the output for each 
muscle, %DET, is imported into the SYNERGOS algorithm, which 
eventually provides a single scalar index representing the state of 
MMA (Pourmoghaddam et al., 2015)

Table 1: The values of surrogate testing for three different algo-
rithms; . ϕ ϕApEn %DET and  represent the value of statistics calculated 
from ApEn and %DET of the EMG signals and surrogate data series.

    SO  GA  TA  VA  RF  BF

Time Shuffled
 ϕApEn   Mean   74.41  33.28  27.62  39.12  76.91  21.85

  SD   6.37  4.74  5.30  6.13  6.85  4.42
 ϕ%DET   Mean   348.30  299.95  248.85  129.93  54.47  89.15

  SD   67.61  37.83  49.02  36.74  14.29  28.93
FT              
 ϕApEn   Mean   74.32  32.82  25.87  38.56  74.97  21.70

  SD   4.96  7.05  5.30  5.27  4.58  6.30
 ϕ%DET   Mean   345.20  295.15  243.93  120.37  44.59  85.06

  SD   13.47  26.88  19.72  5.72  12.35  7.51
IAAFT              
 ϕApEn   Mean   73.07  31.46  24.56  37.77  73.80  21.13

  SD   5.55  6.53  6.97  4.19  5.72  4.57
 ϕ%DET   Mean   340.92  286.48  238.87  110.73  43.38  83.10

  SD   4.50  10.57  16.77  11.88  6.91  6.70

[Fourier transform (FT), iterated amplitude adjusted Fourier 
transform (IAAFT), rectus femoris (RF), tibialis anterior (TA), lateral 
gastrocnemius (GA), soleus (SO), vastus medialis (VM), and biceps 
femoris (BF)]. The data were calculated from the EMG signals clus-
tered by each squat cycle.
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or more determinism in the surrogate data were rejected (ϕ > 2 and 
p < 5%). The underlying nonlinear behavior of surrogate signals 
was significantly different from the original EMG signals; there-
fore, the use of a higher-order nonlinear data analysis technique 
was justified.

As an example, Figure 3A depicts an EMG signal collected from 
the rectus femoris (RF) during a single squat cycle (one knee flex-
ion and one knee extension). Figure 3B depicts the recurrence plot 
(RP) of the RF EMG activity. The deterministic pattern of EMG activity 
during a squat cycle is detectable by observing the recurrent points 
that are positioned along several parallel diagonal recurrent lines. 

Figure 3C represents a random shuffled signal of the EMG activity 
using surrogate testing algorithms. The RP of the shuffled data are 
presented in Figure 3D. These points do not generate long, diagonal, 
recurrent lines, which would indicate determinism of the signal. 
Therefore, no particular deterministic pattern can be recognized by 
observing several recurrent points scattered on the plot. The analy-
ses of the original and surrogate signals also confirmed the results 
displayed in 3B and 3D. For the original signal, the %REC = 1.98; 
%DET = 17.47; radius = 5.2 and ApEn = 0.45, while for the surrogate 
data to obtain a %REC = 0.56 with the same radius of 5.2 was used 
and %DET = 0.01  which is significantly lower than original data. 
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Figure 3: The neuromuscular activities of rectus femoris muscle during a squat cycle are shown by EMG activities in Figure 3A.
The Recurrence plots (RP) generated based on the original data is shown in graph Figure 3B that indicates a specific pattern in the rectus 
femoris activity exists during a squat cycle. This pattern is depicted by several recurrent points located along particular diagonal lines 
which are parallel to the main diagonal line. The outcome of the RQA also verified the existence of the aforementioned pattern (%REC = 1.93; 
%DET = 16.86, radius = 5.2, ApEn = 0.48). The randomized shuffled data of the signal shown in Figure 3C while Figure 3D is the RP of the 
randomized signal which shows no significant determinism in the shuffled data. The time delayed dimensional data in RP are randomly 
scattered around the main diagonal line and the recurrent points are positioned along very short length. In addition, the outcome of RQA 
has shown significant reduction in determinism in the randomized data (%REC = 0.56, %DET = 0.01 radius = 5.2, ApEn = 1.85). The drastic 
drop in the determinism of the signal detected by decreasing %DET and increasing ApEn verified the nonlinear dynamics of the collected 
EMG signal.
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Additionally, the ApEn increased to more than twice the initial value 
(ApEn = 1.75) in the surrogate data. The reduction in %DET and 
increase in ApEn indicates that the surrogate data followed a differ-
ent dynamical pattern from the original EMG signal; therefore, the 
collected EMG signal included nonlinear behaviors (i.e. determin-
ism), which were altered by the randomization of the original signal.

Results
The overall SYNERGOS index across all subjects and squat 
performances was 41.06 ± 10.93. The interaction effect 
between the squat cycles and loading (loading*Squat) was 
not significant [F(8, 96) = 1.818, p = 0.083], suggesting con-
sistent behavior of the SYNERGOS algorithm in quantify-
ing MMA during performance of isotonic motor tasks with 
different loading conditions across repetitions. This result 
was further verified when evaluating the similarity of 
the increase in SYNERGOS indices during different squat 
cycles when the squat loading was increased (Figure 4B). 
A slight decrease of the SYNERGOS index average in squat 
cycle 5 was not significant.

The result of the two-way repeated measures of ANOVA 
indicated that the SYNERGOS index was significantly 
responsive to the change of the squat loading condition; 
the increase in squat loadings was detected by a sig-
nificantly higher SYNERGOS index (Figure 4A), [F(1.503, 
18.37) = 29.762, ω = 0.805, p < 0.001]. Contrast analysis 
indicated that the SYNERGOS indices at BW + 10% was 
significantly higher than during the squat performance 
with no extra loading condition (BW) [F(1, 12) = 41.592, 
r = 0.88, p < 0.001]. In addition, the SYNERGOS indices 
were also significantly higher during BW + 20% compared 
to BW + 10% [F(1, 12) = 19.723, r = 0.79, p = 0.001].

Further, SYNERGOS indices were not significantly dif-
ferent between repetitions, averaged across load condi-
tions [F(2.434, 29.204) = 0.595, p = 0.589].

Discussion
SYNERGOS was developed as an analysis tool to monitor 
the changes in MMA due to the altered environmental and 
task-related constraints. A pilot study had indicated that 
SYNERGOS was responsive to detect the subtle changes 
in MMA resulting from incremental changes in the kin-
ematics of the motor performance during a treadmill walk 
experiment [29]. Results were confirmed in a later study 
that investigated the effects of medication and changing 
gait speed in Parkinson patients [27]. In both experiments, 
gait speed was increased and SYNERGOS was successful 
to detect the changes in the MMA. It is well established 
that during gait at higher speed, the ground reaction 
forces and muscular loading significantly increases [20]. 
In this experiment, the SYNERGOS algorithm was used to 
evaluate the state of MMA when participants performed 
a common isotonic exercise (i.e. squat movement). Our 
initial hypothesis was confirmed, since SYNERGOS 
showed to be sensitive to changes in isotonic loading and 
associated MMA characteristics. The results verified that 
SYNERGOS successfully detected changes in MMA due to 
increasing loading conditions in the squat movements. 
In clinical settings, altered kinetic constraints to accom-
plish a given task (e.g. single leg squat) have been used 
to assess the performance of patients [35], thus the appli-
cation of SYNERGOS is justified to accompany traditional 
motor performance testing methods, as it is capable to 
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Figure 4: (A) is the box plot representation of the SYNERGOS indices, which depicts the overall SYNERGOS index increased during added 
weight squat performance.
(B) is the graph of the averaged value of the SYNERGOS indices for different loading and squat cycles that depicts significant increase in the SYNER-
GOS indices when the loading increases and shows stable repetition-to-repetition estimates of SYNERGOS within each loading condition.
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monitor the changes in MMA resulted from altered kinetic 
conditions independent of the movement pattern.

As shown in previous investigations, increasing the 
squat loading was expected to result in altering neuro-
muscular activities, such as increasing neuromuscular 
activities in the quadriceps femoris in adults aged from 19 
to 90 years during squat movements with increasing body 
weights [17]. Other investigations indicated that during 
squat movements, all measured muscle activities would 
respond to higher squat loading [22, 26]. The increase in 
MMA as reflected in SYNERGOS indices in the current 
study can be explained by the fact that the CNS employs 
more motor unit activation during conditions performed 
with higher squat loadings to ensure adequate neuromus-
cular compensation to provide the required energy and 
balance during more demanding movements over the 
span of the cyclic movement (i.e. squat cycle).

It should be noted as a limitation that we did not assess 
potential gender effects in our current study, since this 
was not one of our research goals. However there may be 
gender-specific activation pattern differences that should 
be taken into consideration, hence future studies includ-
ing SYNERGOS to add qualitative, nonlinear analysis to 
traditional quantitative techniques should also employ 
gender effects analyses. We also observed that there were 
no significantly different indices across the squat motions 
within each loading condition, hence, SYNERGOS provided 
consistent results over the period of multiple squat cycles 
within each loading condition. The consistency of the 
obtained SYNERGOS indices is valuable to facilitate the use 
of this algorithm as a measurement tool that provides accu-
rate assessments. The algorithm shows potential to monitor 
a group of muscular activities and provide a single quan-
tity for each cycle by providing SYNERGOS indices. During 
clinical assessments, the response of the neuromuscular 
system to different loading conditions can be used as a tool 
for monitoring the overall health of the body. Hence, SYN-
ERGOS may be a valuable tool, particularly in long duration 
data collection, as it summarizes the multiple EMG signals 
into a single quantity. Thus, the tool provides a representa-
tion of MMA and its non-linear components, while allowing 
for easier storage and interpretation of data.

Conclusions
The analysis tool presented here had shown value for 
investigating MMA during treadmill walking of healthy 
younger adults and patients before. Here, we showed that 
SYNERGOS as a tool to provide a single value estimate 

of nonlinear MMAis sensitive to the kinetic features of a 
movement task (squat) and associated orchestration of 
cyclic movements under different loading conditions. 
More research is needed to determine the value of SYNER-
GOS for clinical evaluations and research purposes.
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