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Abstract

SYNGAP1-related disorder is a rare neurodevelopmental disorder characterized by intel-
lectual and motor disabilities, including disordered gait control. Currently, there have
been few studies that have assessed the gait of individuals with SYNGAP1-related disorder
using technology-based collection techniques. The purpose of this investigation was to
characterize the kinematic gait pattern of these individuals using camera-based motion cap-
ture technology during treadmill walking. Both linear and non-linear analysis techniques
were used to analyze bilateral lower-limb joint motion and compare the results to age-
matched neurotypical individuals. Results indicate that joint range of motion and velocity
were decreased in the patient population relative to the neurotypical participants with the
non-linear measures of angle–angle and phase portrait areas reflecting similar outcomes.
The combination of linear and non-linear measures provide complementary information
that, when used in combination, can provide deeper insights into the coordination and
control of gait than if either of the measurement techniques are used in isolation. Such
information can be useful to clinicians and therapists to develop targeted interventions
designed to improve the gait of individuals with SYNGAP1-related disorder.

Keywords: gait; time-series; non-linear analysis; kinematics; SYNGAP1

1. Introduction
Haploinsufficiency of the SYNGAP1 gene, most commonly due to loss-of-function

single nucleotide variants (SNVs), causes the syndromic neurodevelopmental disorder,
SYNGAP1-related disorder (SRD). As of October 2024, 1497 individuals have been diag-
nosed with SRD worldwide [1]. This number has steadily increased over the preceding
five years. As late as 2018, only 200 individuals have been diagnosed with SRD [2]. SYN-
GAP1 mutations result in a neurodevelopmental disorder with a phenotype that includes
intellectual disability, delayed and impaired motor development, and a high prevalence of
epilepsy [3]. Approximately 50% of SRD patients are diagnosed with autism [4,5]. Other
abnormal features often include high pain tolerance, hyper-irritability, sleeping difficulties,
and a lack of both receptive and expressive language [6,7]. Proper SYNGAP1 gene dosage is
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essential for healthy synaptic development, neuronal function, and plasticity, as determined
in both rodent- and human-induced neurons [8,9].

Previous research has documented that between 50 and 70% of individuals with SRD
have significant gait abnormalities, with many demonstrating ataxic gait features [4,5,7].
Many SRD patients also experience truncal hypotonia which is likely a key contributor
to poor gait as well as overall deficient motor planning, control, and coordination [5]. It
has also been reported that individuals may have cerebellar dysfunction [3] and general-
ized hypotonia, both of which can contribute to disordered gait [7]. Fortunately, there is
extensive research being devoted to gene-specific SYNGAP1-related disorders that suggests
the potential for the development of significant breakthroughs in patient treatment [10,11].
Creson et al., (2019) [12] have demonstrated genetic reversal in mice and there are current
trials exploring the use of repurposed drugs for those with SRD [13]. These emerging
therapies indicate the need for accurate, reliable, and objective measures for assessment
in response to interventions as well as the monitoring of natural behavioral progression
over time.

The prevalence of gait problems in the SRD population is a factor in the reduced health
and overall quality of life experienced by these patients [14]. To date very little research
has been conducted using technology-based techniques to quantitatively assess the gait of
individuals with SRD [15]. This paucity leaves a knowledge gap in the identification of the
features most prevalent in SRD gait. Using state-of-the-art gait assessment technologies is
crucial if a holistic understanding of SRD gait is to be achieved and used for monitoring of
natural syndrome phenotype progression and therapeutic response.

Gait features have been explored in this study through a variety of linear and non-
linear measures. Temporal measures such as step and stride times are often reported in gait
studies [16,17]. Discrete linear measures, such as lower-limb peak angular position and/or
velocity, and joint angle range of motions (ROM) are frequently reported. Oftentimes, these
variables are used to compute symmetry indices to assess the similarity in these measures
between the two legs [18]. Time-series angular waveform assessment included Pearson r
correlations between conditions of a single joint, and was used to assess the similarity of
the shape of the two waveforms without regard to joint angle amplitude.

In addition to the above measures, the non-linear measures of angle–angle diagrams
(A-A) and phase portraits (P-P) were used to identify gait feature differences between SRD
and neurotypical individuals. A-A diagrams represent intersegmental coordination by
using x-y plots of temporally synchronized time-series waveforms to identify the relative
motion of two joints throughout a gait cycle [19,20]. P-Ps use x-y plots of a joint’s angular
position versus its velocity to explore the control of a particular joint [21,22]. Both types
of diagrams can be quantified by calculating the area encompassed by the diagrams to
provide additional information about gait dynamics.

The use of linear and non-linear gait measures can identify subtle changes in gait
features in response to interventions or over time that would otherwise not be detected
using just one or the other. The complementary use of both techniques results in a more
comprehensive understanding of the unique mobility challenges of SRD patients and
provide insights into specific gait features that can be targeted to improve overall gait
performance. Therefore, the primary goal of this study was to employ both linear and
non-linear techniques to more fully characterize SRD gait patterns and to quantify the
differences between individuals with SRD and neurotypical age-matched participants.



Appl. Sci. 2025, 15, 8267 3 of 15

2. Materials and Methods
2.1. Participants

The participants for this investigation were eight individuals (six females,
X age = 8.8, SD = 4.8 years) each of which had been diagnosed through clinical evalu-
ations and whole exome sequencing (WES). Participants ranged in age from 4 to 17 years
old and were receiving treatment at the Developmental Synaptopathy Clinic at Texas Chil-
dren’s Hospital, in Houston, TX, USA. All were able to walk independently, free of orthotics.
None were taking benzodiazepines or any other medication that would be expected to
impact their motor control. The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of the Baylor
College of Medicine (H-35835) and the University of Houston (00000855). The participants’
parents provided written informed consent. Table 1 provides demographic and variant
information of each participant.

Table 1. Participant biological sex, age, and genetic mutation.

Participant Biological Sex Age Syngap Genetic Mutation

1 M 9 c.3718C>T (p.R1240X)

2 F 9 c.3190C>T (p.Q1064X)

3 M 8 c.3583-9G>A (IVS16-9G>A)

4 F 12 c.1677-2A>C (IVS10-2A>C)

5 F 4 c.659T>C (p.F220S)

6 F 17 c.3541_3557del (p.K1181Aspfs*3)

7 F 5 c.3535A>T (p.K1179*)

8 F 5 c.3535A>T (p.K1179*)
* stop codon.

2.2. Data Collection

Prior to data collection, infrared reflective markers were placed bilaterally on the
anterior and posterior superior iliac crest, mid-lateral femoris (one marker slightly superior
to the other), lateral femoral epicondyle, anterolateral mid-shaft of tibia, lateral malleolus,
2nd metatarsophalangeal joint, and calcaneus. This placement was consistent with the
recommended Vicon plug-in gait placement and enabled bilateral collection of the hip,
knee, and ankle joint motion. All collection procedures were performed by well-trained
and experienced doctoral students under the supervision of the two senior authors. The
participants then mounted a motorized treadmill (Bertec®, Columbus, OH, USA) and were
secured in an overhead harness that prevented falls but did not provide postural support
during walking. A static calibration was then obtained. To determine the participants’
comfortable walking speed, the task began with the treadmill speed set to 0.1 m/s and was
gradually increased by 0.1 m/s until the participants began to display signs of discomfort
such as facial and hand motions, or vocalizations, or when the parents indicated the
speed should be reduced. The speed was then reduced by 0.2 m/s and was labeled as
the participants preferred speed. Once the preferred speed was identified, participants
walked for two minutes to acclimate to the treadmill. After a brief rest, data collection
was initiated and continued during three minutes of walking. The kinematic data were
collected at 100 HZ using a Vicon® 16-camera motion (Vicon, Oxford, UK) capture system
and processed with the Nexus v2.15 plug-in gait data processing software. A representation
of the data collection environment including the treadmill, harness, and marker placement
is displayed in Figure 1.
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Figure 1. The data collection set up.

2.3. Data Processing

The initial step in data processing involved using a custom Matlab (MathWorks®)
script to filter the joint angle kinematic data with a 2nd order Butterworth low-pass filter
with a 6 Hz cutoff frequency. Due to the fact that heel strike did not occur during a
significant number of steps (i.e., toe-walking), the sagittal plane angle waveforms for each
joint were partitioned into individual strides using the sample that reflected peak knee
flexion [23]. Stride times were then determined based on the number of samples per stride
when accounting for sample rate. The filtered waveforms were temporally normalized so
that each stride and joint was represented by 100 samples. The mean waveforms for each
joint and participant were then calculated.

The data for the neurotypical participants was obtained from a publicly available
data set [24]. The authors stated that “This normative data can be used for comparison
of pathological gait, thereby improving the interpretation of pathological gait and finally
contributing to better clinical decision making (p. 3).” Participants ranged in age from 3
to 17 years old, with multiple participants in each age group. A preferred walking speed
was identified prior to data collection. Data was collected in three conditions, in which
participants were instructed to walk at their (1) preferred speed, (2) a fast speed (30%
greater than preferred), and a slow speed (30% less than preferred). This data set was
collected and processed using procedures very similar to those described above, including
being collected with the Vicon® camera-based motion analysis system, motorized treadmill
walking, and data processing using Matlab® R2023b. The raw data was filtered and
the joint angle data separated into individual strides and then temporally normalized to
100 samples. For each participant, the average bilateral joint angles for the hip, knee, and
ankle were reported. For this study, the data collected at the slow speed was used for
comparison as the stride times matched those of our SRD participants. To develop the
neurotypical data set, joint angles from participants of the same age as the SRD participants
were randomly selected from the published data. For example, for each nine-year-old in
the SRD data set, the data from a nine-year-old in the neurotypical data set was randomly
selected to contribute to the neurotypical data set. This process resulted in age-matched
data sets. Each joint time-series waveform for each participant (neurotypical and SRD) was
demeaned by subtracting each individual waveform’s mean value from each sample in the
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waveform. This served to reduce the between-participant variability of the waveforms. All
variables described below were computed using custom Matlab (MathWorks®) scripts.

2.4. Linear Measures

In addition to stride times, two other linear measures were calculated for each stride
and joint: ROM and peak angular velocity. ROM was obtained by first determining
the maximum and minimum angular value a joint moved through during a stride. The
difference between the two values constituted the ROM. Mean ROM and peak velocity
values, plus one SD, were computed for each joint of each participant. Coefficients of
variation (CV) represented as a percentage were computed for ROM and peak velocity
measures. Symmetry indices (SI) for the peak velocity and ROM data were developed
using the formula as follows:

Symmetry index =

SI = |XG−XL |
0.5·(XG+XL)

·100%

where XG equals the greater value of the metric and XL equals the lesser value of the metric.
A SI of 0 reflects perfect symmetry between the two limbs [25].

Confidence intervals (CI) at the 95% level, bracketing the neurotypical joint time-series
waveforms, were developed and the percentage of SRD waveforms samples that fell outside
the CI were obtained [23,26]. Pearson correlation coefficients assessing waveform similarity
were developed between each joint’s SRD and NT waveform.

2.5. Non-Linear Measures

Using the individual mean waveforms for each joint and participant, angle–angle
diagrams and phase portraits were developed. Angle–angle diagrams included the joint
pairs hip vs. knee and knee vs. ankle of each leg. Phase portraits for the hip, knee, and ankle
for each leg were generated. The area of the diagrams and portraits were then calculated
and means and SDs computed. CVs were computed for the angle–angle and phase portraits.
Welch’s t-tests were used to determine if there were differences in the variables between the
left and right legs, except for the SIs, as that variable is calculated using the data from both
limbs. As there was no difference in any of the variables for either data set, the data were
collapsed over the two legs, creating data sets of 16 samples for each variable of both the
SRD and neurotypical data sets. Welch’s t-tests were then used to determine if significant
differences existed between the two groups. When appropriate, Bonferroni corrections
were applied. To assess the potential difference in the relative variability of the measures
between the two groups, the percentage difference in the CVs were calculated for the ROMs,
peak velocities, A-A, and P-P areas.

3. Results
3.1. Linear Measures

A Welch’s t-test showed that there was not a significant difference in stride times
between the SRD (X = 1.07, SD = 0.19 and neurotypical group X = 1.06, SD = 0.15),
t(16) = 0.30, p = 0.768.

Table 2 indicates that the mean stride times between the two groups were not different.
The peak velocities of the hip and knee of the SRD group were significantly less than those
of the NT group, while there was no difference between the ankle velocities of the groups.
Although the stride time CV does not reflect a noteworthy difference, the CVs for the peak
velocities differ substantially. In all cases the CVs of the SRD group were greater than those
of the NT group.



Appl. Sci. 2025, 15, 8267 6 of 15

Table 2. Mean and SD stride times, peak joint velocities, CVs, and CIs of NT participants.

SRD NT p Value NT CI

Stride Time 1.07 (0.19) 1.06 (0.16) 0.7680 0.93–1.19

CV 17.8 15.1

Peak Velocity SRD NT NT CI

Hip 1.43 (0.23) * 2.21 (0.24) 0.0001 2.01–2.41

CV 16.1 10.9

Knee 2.20 (0.31) * 3.75 (0.21) 0.0001 3.57–3.93

CV 14.1 5.6

Ankle 1.30 (0.59) 1.21 (0.30) 0.6547 0.96–1.46

CV 45.4 24.8
* represents statistical difference between SRD and NT, with a Bonferroni corrected alpha level of 0.0167.

Table 3 shows that the ROM of the hip and knee of the SRD group is significantly less
than that of the NT group. Although trending in the same direction as the other joints, the
SRD ankle is not significantly different than NT ROM, with the substantial variability of
the SRD group likely accounting for the lack of significance. The CVs for all joints indicate
that the relative variability of SRD participants is substantially greater than that of the
NT participants.

Table 3. Mean ROMs and SDs, CVs, and CI of NT participants.

ROM SRD NT p Value NT CI

Hip 26.4 (6.3) * 42.1 (5.0) 0.0001 37.9–46.3

CV 23.8 11.9

Knee 33.9 (7.7) * 63.30 (5.7) 0.0001 58.5–68.1

CV 22.3 9.0

Ankle 18.3 (10.5) 24.3 (4.7) 0.3054 20.4–28.2

CV 57.4 19.3
* represents statistical difference between SRD and NT, with a Bonferroni corrected alpha level of 0.0167.

Figure 2 reflects that the basic mean movement pattern is fairly similar between the
two groups but the amplitude of the SRD waveform across the stride is different for each
joint (see also Tables 3 and 4).

Table 4 presents the mean and SD SI values for the ROMs and peak joint velocities of
each joint for both groups. These data reflect that the asymmetry between the two limbs,
for both measures, is much greater in the SRD participants than the NT participants as all
of the SRD values fall outside of the NT CI bounds.

Table 5 represents that for each joint, the waveforms of the SRD group display a high
degree of similarity with those of the NT group, but the vast majority of the SRD samples
falls outside the CIs of the NT waveforms.
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Figure 2. Mean waveforms and CIs of the NT group and the mean waveform of the SRD group for
each joint. The blue waveforms represent the SRD group, red waveforms represent the NT, and the
dash lines represent the 95% CI for the NT group. Panels (A,C,E) are from the left leg and (B,D,F)
are from the right leg. Top panels represent Hip, middle panels represent Knee and bottom panels
represent Ankle. Values above 0 degrees represent flexion, while values below 0 represent extension.

Table 4. Mean SI and SD for each joint of the SRD and NT groups.

ROM HIP Knee Ankle

SI −20.2 (14.1) −10.0 (8.8) −43.3 (48.9) −12.1 (7.9) −138.8
(77.1) −27.2 (18.8)

CI −17.5–−2.8 −18.6–−5.7 −42.8–−11.7

Velocity
(deg/s)

SI −21.6 (11.7) 12.0 (7.8) −39.0 (42.0) −8.8 (7.5) −117.5
(94.8) −26.7 (28.2)

CI −18.4–−5.5 −14.8–−2.7 −50.3–−3.1
SRD—left columns, NT—right columns, CIs of NT group.

Table 5. Pearson r correlation values and the percentage of SRD samples outside the NT CIs for each
joint, between the waveforms of SRD and NT groups. All correlation values exceeded the critical
r-value of 0.798, corresponding to an alpha level of 0.005.

L Hip L Knee L Ankle R Hip R Knee R Ankle

Pearson r values 0.96 0.98 0.92 0.91 0.98 0.88

Percentage 92% 84% 83% 94% 91% 80%



Appl. Sci. 2025, 15, 8267 8 of 15

3.2. Non-Linear Measures

Figure 3 displays the NT and SRD mean hip–knee and knee–ankle angle–angle figures.
While the shape of the waveforms is very similar between the two groups, the amplitude
of the SRD is significantly smaller than that of the NT waveform.

 

Figure 3. Angle–angle hip versus knee (A), and knee versus ankle (B) waveforms of the SRD and NT
groups. Blue represents the SRD participants and red represents the NT participants. Positive values
represent flexion while negative values represent extension.

Table 6 shows that the two angle–angle area comparisons were significantly different
between the two groups. Table 7 indicates the phase portrait areas of the hip and knee
were significantly different while the ankle comparison failed to reach significance using
the Bonferroni alpha correction. In all cases, the SRD group has smaller values than that
of the NT group. Also note that there are substantial differences in the relative variability
(i.e., CVs).

Table 6. Angle–angle and phase portrait mean areas and SDs, for the SRD and NT groups.

SRD Hip vs.
Knee

NT Hip vs.
Knee p Value SRD Knee

vs. Ankle
NT Knee
vs. Ankle p Value

Angle–angle areas (mm2)
Mean

SD
582 *
222

1689
316 0.0001 214 *

110
426
85 0.0001

* represents statistical difference between SRD and NT, with a Bonferroni correct alpha level of 0.025.

Table 7. Phase portrait mean areas and SDs, for the SRD and NT groups.

SRD Hip NT Hip p Value

Phase portrait areas
(deg2/% of gait cycle) Mean (SD) 40 * (14) 106 (22) 0.0001

CV 34.5 21.1

Phase portrait areas
(deg2/% of gait cycle) Mean (SD) 114 * (42) 403 (71) 0.0001

CV 36.8 17.6

Phase portrait areas
(deg2/% of gait cycle)

Mean
SD 42 (39) 67 (18) 0.0331

CV 92.9 26.0

* represents statistical difference between SRD and NT, with a Bonferroni correct alpha level of 0.0167.

Figure 4 displays the mean phase portraits of the two groups for the hip, knee, and
ankle. Similarly to the angle–angle figures, the shape of the portraits was comparable
between the two groups and the SRD waveforms were significantly smaller than those of
the NT group.
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Figure 4. Phase portraits of the SRD and NT groups of the hip (A), knee (B), and ankle (C).

Blue represents the SRD participants and red represents the NT participants. Positive
values represent flexion and negative values represent extension.

Table 8 displays the CVs and percentage differences between the groups for the various
measures. The data indicate that the SRD group had much greater relative variability than
the NT group, as reflected in the large percentage differences.
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Table 8. CVs of SRD and NT groups of ROMs, peak velocities, A-A, and P-P areas.

CVs Hip Knee Ankle

ROM
SRD 23.8 22.3 57.4

NT 11.9 9.0 19.3

% Delta 100 148 197

Peak
Velocity SRD 16.1 14.1 45.4

NT 10.9 5.6 24.8

% Delta 48 152 83

Hip vs. Knee Knee vs. Ankle

A-A Area
SRD 38.2 51.1

NT 18.7 20.0

% Delta 104 156

Hip Knee Ankle

P-P Area
SRD 65.5 70.3 174.3

NT 40.0 33.2 51.5

% Delta 68 156 214

4. Discussion
Gait quality has been shown to closely correlate with overall health status in neurotyp-

ical individuals [27]. In individuals with neurodevelopmental disorders, gait quality is
associated with the severity of their condition, suggesting that comprehensive gait assess-
ment may possibly offer valuable insights into their overall health status [14,28]. Much of
the existing literature describing the motoric characteristics of individuals with SRD have
come from observational surveys, primarily focused on fundamental motor skills and fine
motor skills related to activities of daily living. More formal surveys have included the use
of the Alberta Infant Motor Scale, various subtests of the Bayley Scale of Infant and Toddler
Development, and the Gross Motor Function Measure (GMFM).

Gait quality is increasingly being considered as a possible non-invasive biomarker [29].
Therefore, it is important that gait metrics of individuals with SRD are accurately measured
quantitatively and objectively using state-of-the art motion analysis technologies and an-
alyzed with a variety of techniques. To explore the possibility that gait could serve as a
biomarker, more laboratory-based studies with significant numbers of participants need to
be conducted. However, as mentioned previously, the only laboratory-based evaluation
of gait with SRD participants was conducted by [15], and this study had limited general-
izability as only one individual with SRD participated. Expansion of the number of SRD
gait studies as well as increased numbers of participants are needed before meaningful
examination of potential relationships between clinically accepted motor scales and gait
measures can be conducted. The current report characterizes the gait of eight participants
with SRD and compares the outcomes to those of age-matched controls, thereby represent-
ing a significant increase in the number of participants compared to the previous report
from our group.

As there are no differences in stride times between the two groups (Table 2), potential
changes in the additional gait measures can be interpreted as results from differences in
coordination or control, and not temporal features of the stride. The SDs for the two groups
also indicate that stride time variability is very similar for the two groups. As the SRD and
NT groups are composed of age-matched participants, the stride time data suggests that
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individuals with SRD are quite capable of producing gait cadence that match the slow speed
of NT individuals, at least during motorized-driven treadmill walking. The rhythmical
pattern of lower-limb motion is proposed to be generated by a complex of spinal neurons
requiring the intervention of higher-order structures to produce functional walking [30,31].
This spinal complex is labeled as a central pattern generator, more commonly known as
a CPG. The matching stride times of the two groups may indicate that the CPG complex
remains functionally intact in those with SRD. However, as the results indicate, there are
substantial differences between the gait metrics of individuals with SRD and age-matched
neurotypical controls, particularly with regard to the magnitude and variability of joint
motion. This suggests that other physiological mechanisms are likely contributing to the
dysfunctional gait of individuals with SRD. As mentioned in the introduction, hypotonia,
particularly truncal hypotonia, cerebellar deficits, muscle weakness, and dyspraxia all
likely play a role in the disordered gait [3,5,7,32].

Table 2 reflects that despite no differences in stride times, the peak velocity of the hip
and knee of the SRD participants is significantly less than the NT participants. However,
there is no difference in the ankle peak velocity. Similarly to Table 2, Table 3 shows that
the SRD ROMs of the hip and knee are also less than the NT group, with no difference at
the ankle. Peak velocities and ROMs are discrete measures that provide useful summary
‘snapshots’ of joint behavior but convey no information about how a joint is moving through
space over the course of a stride. However, when discrete measures are combined with non-
linear measures, a more complete representation of a joint’s behavior is revealed. Enhanced
representation can provide greater insights into time periods when gait patterns between
two groups differ and how the joints move through space individually and relative to
each other.

Figure 1 illustrates the above idea. It can be observed that the ‘shape’ (i.e., when
the joint is moving in flexion or extension) is similar between the two groups for a given
joint. This visualization is confirmed by the high correlations reported in Table 5. However,
despite the similarity in the shape, it is obvious that the amplitudes of the waveforms differ
between the SRD and NT participants. This is confirmed by the high percentage of the SRD
samples that fall outside the 95% CIs of the NT group, for all joints. Further, by evaluating
the entire waveform, and using the NT waveform as the reference, we find that at times, the
SRD waveforms exhibit greater flexion/extension while at other times the SRD waveforms
exhibit less flexion/extension. This information is not readily available if only the discrete
ROM value is calculated.

To execute effective goal-directed gait, intra-segmental coordination must be achieved.
While the waveforms in Figure 1 are informative, they provide little information about
how the joints within a given leg are coordinated, or how joints across the two legs work
together. A-A diagrams provide such information. Consistent with the reduced ROMs of
the SRD group for all joints, the areas of the hip-vs-knee and knee-vs-ankle are significantly
less than those of the NT group, as reported in Table 6. Not surprisingly, however, is the
similar shape of the A-A diagrams between the two groups. This is to be expected given
the time-series waveforms also have similar shapes. Figure 2 reveals that the reduction
in the ROM for the SRD group’s waveforms occurs throughout the stride, for each joint,
resulting in considerably compressed waveforms, and consequently, significantly reduced
areas. Therefore, although the coordination pattern between the joints is very similar, the
SRD group’s joints are moving through significantly smaller regions of space compared to
the NT groups.

Although information about the motion of the joint through space across the stride
is available in Figure 1, information about the velocity at which the joints move through
space is absent. The peak velocities listed in Table 2 indicate that there are differences
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between the groups for the two proximal joints. These discrete peak velocity differences
suggest that the control of the joints is different between the two groups. However, with
a time-series graph, it is impossible to determine where velocities are similar and where
they are different across the stride. However, this information can be determined through
visual inspection of phase-portraits. Figure 4 reveals that the velocity of all the measured
joints for the SRD participants is reduced throughout the entire stride and again resulting
in smaller P-P areas relative to the NT participants. As P-Ps reflect joint control features,
Figure 4 and Table 7 confirm a significant difference in lower-limb control between the
two groups throughout the stride that cannot be discerned from observing peak velocity
values alone. This is especially true for the ankle, where the areas of the ankle P-P reflect a
significant difference, but no difference in the peak velocities (Figure 4 and Table 2).

In addition to the necessity of intra-segmental coordination, inter-limb coordination
is also necessary for effective walking. SIs are a common technique to assess inter-limb
coordination by comparing the degree of equality of the behavior between joints of the two
legs. Table 4 reflects large differences in the SIs for the ROM for all joints, with the SRD
group being less symmetrical than the NT group. Likewise, the symmetry between the
legs for each joint is less in the SRD participants than the NT participants. In all cases, the
variability (i.e., SD) is much greater in the SRD compared to the NT group for both the ROM
and peak velocities. The only exception is the hip peak velocity SDs. In combination, these
measures reflect the increased difficulty of the SRD participants to finely coordinate and
control their two limbs to produce symmetrical walking patterns. Given that the treadmill
belt was moving at a fixed speed, and there were still difficulties in producing symmetrical
gait, it is expected that further decreases in symmetry occur during overground walking.

It should also be noted that the CVs of the SRD group for all measures are much
greater, reflecting more relative variability in this group compared to the NT group. For
both groups the relative variability of the ankle always exceeds that of the hip and knee.
This indicates that across the sample, both groups displayed a wider range of ankle joint
behaviors, in terms of both joint angular position and velocity, than the two more proximal
joints. Although the pattern of variability across the joints is the same between the two
groups, the magnitude of relative variability is much greater in the SRD group. Table 8
displays CV comparisons between the two groups, with eight of those revealing the SRD
values were 100 or more percent greater than those of the NT group. This also indicates a
wider range of joint behaviors, for all joints, exhibited by the SRD group.

The amount of relative variability is not a function of the age of the participants, as
the NT group always displayed less than the SRD group despite each participant being
aged-matched with a participant from the other group. This suggests that there is not a
stereotypical gait pattern that can be labeled as ‘SRD gait’, in the sense that stereotypical
gait patterns of individuals with Parkinson’s disease produce ‘Parkinsonian gait’. These
findings also indicate that individuals with SRD are more likely to produce individualized
gait patterns regardless of age. This contrasts with NT participants who from a very young
age produce very a stereotypical gait pattern that is often labeled as ‘healthy gait’.

Overall, the patterns of differences between the SRD and NT groups are consistent
with the findings of the Layne et al., (2022) report [15] which used some of the same
analysis techniques as the current report. However, those authors discussed a single case
study of one individual with SRD whose gait measures were compared to that of a single
age-matched NT individual. The current study expands on that previous work through
a significant increase in the number of participants and a measure of intra-segmental
coordination (i.e., A-A areas). Like the previous work, the use of both linear and non-linear
measures allows for a greater characterization of gait patterns than using a single category
of measures. Documenting how joint behavior changes throughout the gait cycle provides
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clinicians and investigators with important information about underlying neuromuscular
features that need to be modified to produce more efficient gait. Potential subtle changes in
gait, be they the results of therapeutic intervention or developmental regression, can be
more easily detected with a variety of analysis techniques compared to being observable to
the human eye.

Limitations and Future Work

Although greatly increasing the number of individuals with SRD compared to Layne
et al., (2022) [15], the total of eight participants in this study remains far short of the number
required to more fully characterize the range of gait patterns associated with the SRD
gait. This relatively low number of participants does limit the ability to generalize the
findings but does substantially increase the number of participants with SRD who have
participated in a laboratory-based study of gait. The current report does provide the first
laboratory-based quantitative measures of gait variability in the SRD population. The
limited number of participants does prevent answering the question of whether age is
associated with either progression or regression of gait in SRD. Thus, future work should
continue to expand the number of individuals with SRD participating in laboratory-based
gait investigations across all age groups. Additionally, comparisons of gait performance
between SRD patients and individuals with other genetic disorders, such as Rett Syndrome,
would provide useful information to researchers and clinicians. The application of a
variety of linear and non-linear techniques should also be used to characterize overground
walking of individuals with SRD, with comparisons made to gait characteristics obtained
during treadmill walking. Although treadmill walking offers the advantage of a more
controlled environment that allows for the study of the basic gait pattern, fall prevention
harnesses offer a degree of protection that is typically not available during overground
walking. Therefore, the need for greater dynamic postural control is increased during
overground walking, relative to treadmill walking. As overground walking is the ‘natural’
form of locomotion, with its emphasis on goal-directed behavior, overground walking
presents the opportunity to adapt to the environment. However, that very opportunity
also creates circumstances that allow extremely variable gait patterns, including stopping,
turning, and completely walking off electronic gait mats that are often used to collect
data during overground walking. These behaviors result in modified segmental gait
motions and associated metrics when compared to the less variable treadmill-driven gait
motions. A future manuscript will explore the potential differences between treadmill and
overground gaits.

Advances in computing power have resulted in the development of powerful ana-
lytical techniques that can lead to insights that were previously difficult to uncover. In
particular, machine learning approaches have opened new vistas in the understanding of
gait control of both neurotypical and patient populations [33]. Identifying relevant gait
features by reducing dimensionality and classification, as well as clustering techniques,
are just a few of the ways that machine learning has assisted in identifying clinical gait
patterns and diagnoses. For a recent review see Dibbern et al., 2025 [33]. Recently, the use of
machine learning has been proposed to create a ‘healthy’ digital twin for individuals with a
disordered gait that provides individualized predictions of joint kinematics during the gait
cycle. This procedure serves to help identify stride kinematics that emulate neurotypical
patterns versus disordered stride kinematics [34]. The above are just a few of the ways
machine learning can be useful to investigators and clinicians attempting to characterize,
understand, diagnose, and ultimately improve the gait performance of a variety of popula-
tions. As kinematic data sets expand in both the number of participants and number of
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strides, machine learning is expected to play an ever-increasing role in the analysis of gait
patterns produced by individuals with SRD.
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