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Using, factor analys1s to 1dent1fy neuromuscular synergies during. .
“ treadmﬂl,,walkmg

LA, Merkle'?‘;’

C.S”Layne JJ Bloomberg J.J. Zhang?®

Abstract

analys1s is a powerful, stansncal'techmque that gx;oups vanables mto conceptually meanmgful clusters but remams underutlhzed
by neuroscience researchers,p! rocedures. This paper 'llustrate an'apphcauon of
factor analysis. to-identify coordmated;patterns oi: whple body muscle acﬁvatmn durmg treadmﬂl. y
~walked on a treadmi i i ’
) sternocleldomastmd" )
gastrocnemms
labeled transy

effectively used- % explore
coordination TeEESSATy for,:smooth“"and ‘efficient locomotlon We -encourage “newnroscientists to" consuier using; factor analys1s toio .
1dent1fy coordmated patterns ofineuromuscular activation that would be obscured using more traditional-'EMG:analyses:© 1998

Keywmds Coordmatlon Electromvography, Factor analy51s Neuromuscular .synergies.

v

1. Introduction - .. ' This useful techmque patterns relat1onsh1ps among
P varlables reduces data, analyzes latent dimensions, gen-

Factor . analyszs vlS a statlst1Ca1 techmque used to. erates factor scores and tests hypotheses (Rummel
identify a small u;nber of groups or clusters that",’:.w 1970; Gorsuch 1983). It may be used a pnon or post
represent relatlonsh.tps Aamonsz a.set of 1nterre1ated vari- | hoc. A priori factor analysis (conﬁrmatory) is used for
ables. These cor;ela'uon paitems are expressed in terms  more d1rect input response analysis of the data. Con-
of unobservable or, ;ent Var ables called ‘factors T,he_‘ ' versely, post hoc (exploratory) helps gain 1nsxght into
‘goal of factor, analysm is tq identify the not-so- observ-’: . relationships among variables (Disch, 1989). Ex-
able factors from the. set of observable variables (Noru-. ploratory analysis is not always guided by a spec1ﬁc set
sis, 1994) ThCSC factors can then be mterpreted and of hypotheses but can be oulded by open questlons
given meaning based. upon the observed variables that about the number and, kmds of factors which may be
load on them. . : derived from a collection of variables. The present

study focuses on exploratory factor analysis.
o Factors account for linear relationships that exist
* Corresponding author. Tel.: +1 281 4833361; fax: +1 281 among observed variables (Gorsuch, 1983). Factors
2445734, have common (related) and unique (unrelated) compo-
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nents. and are.fewer-in-number than the total number
of observed varldbles Mathematically. it is similar to
multiple regressioh. The steps involve calculation of the
correlation matrix; extraction of the initial factors. ap-
plication of mathematical rotations. calculation of fac-
tor scores and interpretation of results. Bartlett’s test of
sphericity. communalities, and Kaiser-Meyer—Olkin
(KMO) measures assess the degree of relation among
the set of variables and compare the magnitude. of.the
observed cortelations to the magnitudes of partial cor-
relations. These gauge the strength of variable interrela-

tionships (Kaiser, 1974; Norusis, 1994). Generally, they

are indicators of the approprmte apphccmon of detOI'
analysis. n i -
The primary issues in factor analy51s are extracuon

and rotation. The crlterlon for a rotatlon is to redch ‘

simple structure defined by Thurstone (1935), such that

variables should have high loadings on one and only .

one factor, and zero or near-zero loadings on all other
factors. Many factor extraction techniques exist, such
as principal component, maximum likelihood, image,
and alpha. Among these, principal component is the
most popular option, because (1) each factor maximizes
the variances explained from the correlation matrix; (2)
a factor explains more variance compared to-solutions

from other approaches; (3) the amount of variance -

explamed by each factor is equal 1o the correspondmg

set of factor loadmgs (Nunn=
There are many rotation o.pt'

are rotated <at right angles; and:factors are independent
of one another.-Of these options;ivarimax is very often
selected because it derives uncorrelated factors and
simplifies factor interpretation.

Criteria are necessary to determine how many factors
to retain. Generally, factors with eigenvalues greater
than one should be retained (Rummel, 1970; Gorsuch,
1983; Noru51s v1994) An exgenvalue i1s defined as the
total Var1ance & “'each’ factor. In pnnmpdl
componems the total vauance 1s"equa1 6" the total
number of Varlablf Uisis, 1994) For example Wwe

included seven vanables"(muscles) n "the model ‘§0'that

the total variance is seven. Each “obsetved Varidble is
initially assigned a variance of oné. The-eigenvalues of
the variablés redistribute among ‘the factors, so factors
with an eigenvalue less than one are no better than 4
single variable. Moreover, a common factor must ac-
count for the variability of at'least one variable, s¢ each
common factor should have an éigenvalué of oneor
greater. Therefore, one should retain factors with eigen-
values greater than one. A scree plot (where eigenvalues
are graphed in order of magnitude) often confirms this
criterion. The plot shows a distinct break between the

o . ac vatlon _during walkmq ‘(Wootten et al

tions are- orthogonal meamng th mathernatlcal axes. -

steep slope of the large factors and the gradual leveling
of the rest of the factors (see Stevens (1992) for full
explanation).

Factor analysis is quite popular in education and
psychology. Physical educators successfully use this
technique in- analyzing and identifying the components
of different sport skills and fitness levels. Psychologists
use the technique to develop and test construct validity

1in their inventories. Yet, factormanalysm remains unfa-

miliar to many scientists du€ to its complicated con-
cepts and- procedures. Particularly, it is rarely used in
neuromuscular investigations. For this reason, this
study illustrates an application of factor analysis by
extracting coordinated patterns -of svhole-body muscle
activation, during treadmlll walking.

Walkmg results from whole- body synergy Or pre-

'c1se1y timed neural activation and dedctivatlon se-
.quences of the musculature throughout the entire body,

and a tight synergy between the movement of the head
and the trunk (Bernstein. 1967; Layne et al., 1997).
However, few studies have examined the relationships
between upper- and lower-body activation sequences.
Whole-body synergy at the neuromuscular level sug-.. -
gests common neural control signals among the muscles
(Bernstein; 1967)::"Fhese: synergies function to. reduce
the number of ontrolledwdegrees of freedom thereby

o "1990; Dav1s‘v
‘Vaughan 1993; Olree and Vaughan, 1995). The

.A_;ﬁndmgs of these studies vary. Wootten et al. (1990)

used the technique to identify principal components of.
electromyography (EMG) which represented average -
EMG patterns for cluster analysis..Davis and Vaughan-
(1993) identified four factors labeled heelstrike, loading
response, propulsion, and biphasic patterns. Olree and
Vaughan (1995) identified three factors labeled loading,

‘propulsion, and coordination. The authors agreed that

the extracted factors were evidence of a few fundamen-
tal signals generated by the central nervous systéni to
control the major muscle groups in both legs. These
studies suggest that‘factor analysis is a useful statistical
procedure in 1dent1fymg interlimb neuromuscular acti-
vation patterns ‘that ‘contribute to human locomotlon
However, only lowe1—’body activation patterns were in-
cluded in the’ past studles ‘providing insufficient infor-
mation “to - fully “inderstand  the - whole-body
coordination necessary for walking. Trunk’ and neck
musculature ‘was ‘added in the present investigation
because these muscles play a role in head stabilization
and dynamic equilibrium during locomotion. Including
the neck and trunk builds upon the descriptive work by
Winter and associates (Winter and Yack. 1987; Winter

et al., 1990, 1993) and the pioneer application of factor
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analysis of Olree and Vaughan (1995), Davis und
Vaughan (1993). and Wootten et al. (1990). The pur-

pose of this study was to illustrate the application of

factor analysis in the area of muscular activation pat-
terns. by asking “what are the interrelations among
muscle activation patterns that effect a coordinated
outcome?”.

2. Methods

2.1. Subjects

Ten males (mean age 43.5 + 5.4 years). volunteered

to participate in this study. Two subjects were Amerl-»
can astronauts, and the othel eight were, Russmn cos-

monauts. All _subjects prov1ded written .
consent as requlred by the Johnson Space
man Research Policy and Procedures .Comm

2.2. Procedures

Data were. colie_cted assubjects walkedfor 20 s on s
a motorized, treadmill -(Quinton Series 90..Q,.55,- sut-
face area 5l.x:140. cm) at. 6.4, km/h - while visually
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time constant. In addition, temporal events were iden-
tified using piezoresistive force transducers (foot-
switches) attached to the heel and toe of both feet
to record heelstrike and toe off. For each 20-s trial,
22-24 individual strides. from right heelstrike to right
heelstrike, were extracted from the processed EMG
on the basis of voltage records obtained from the
footswitches.

2.3. Data reduction and analyses

Mean stride times were calculated by averaging the
22-24 strides within each trial relative to right foot.

-heelstrike. EMG data for all strides were temporally
‘normalized using cubic spline interpolation. EMG

was also normalized to 100% of stride by averaging

-the EMG signal between right heelstrikes. The aver-

. sented as 100%

fixating, on..an. earth-fixed light-emitting diode (LED). . -

positioned -horizontally;-30 cm-from the eyes. The skin.
surface .was prgpared -using medical alcohol prepara-

tions. Preamplifier;surface :electrodes (bandpass 30- .

300 Hz) were placed..onthe:
the left sternoc

skin. oyer the bellies of
| CM), -left erector
spinae (LES) right- rec_ S, femons RF) right biceps
femoris (RBE), right tibialis-ianterior. (RTA), and
right medial gastrocnemius (RGA) and .seeured with
hypoallergenic tape. An electrode was also placed on
the left side of the neck between Cl and C3 which
monitored the neck extension (NE) musculature. The

electrodes were covered with elastic leg wraps o pre=- *

vent motion artifacts resulting from disruption of the

electrode-skin surface interface. Raw 'EMG-activity

was recorded at 500 Hz, then ‘high -pass filtered (30
Hz), full wave rectified, and smoothed using a 15-ms

Table 1
Intercorrelations of muscle activation patterns

aged waveforms were then normalized to the mean
“level of.activation for that waveform resulting, in. the
mean  activation within the waveform being repre-
Files contammg 70 data points
(epochs) Were: created from the s li

. form comprlsmg 20 data” p
meamngful statistical® analy31s W
sic temporal and spatial features C
waveforms. The reduced actlvaud L

resultmg i ad ensemble average for each us
ensemble average of seven muscles was then’ reduced
to a matrix of seven columns (muscle) by 70 rows
(5% epochs) The teduced data for seven muscles
(LSCM' ‘NE! LES, RBF, RRF RGA and RTA) were
*used in' the analyses’

Procédires from ‘the Statistics Package for the So-
cial Sciences (SPSS) were used to conduct a factor
analysis “with " principal - component extraction- and
varimaX’ rotatlon

Muscle NE LSCM LES RBF RRF RGA RTA
NE 1.00 —0.01 0.21 0.42 0.38 0.06 0.34
LSCM 1.00 0.16 0.57 —0.17 —0.38 052
LES 1.00 0,39 0.23 —0.13 0.67
RBF 1.00 —0.12 —0.40 0.79
RRF - 1.00 —0.18 021"
RGA 1.00 —~0.57
RTA 1.00

LES. left erector spinae; LSCM. left sternocleidomastoid: NE. neck extensors;

right rectus femoris; RTA, right tibialis anterior.

RBF. right biceps femoris: RGA, right medial gatrocnemius: RRF,
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Table 2
Initial statistics from principal components extraction
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Factor Eigenvalue Amount of variance explained (%) Cumulative % of variance

1 3.04 43.5 43.5

2 1.49 21.2 64.7

3 0.98 : 14.0 78.7

4 0.78 11.2 89.9

5 0.47 6.7 96.7

6 0.16 - 2.3 98.9

7 0.08 1.1 100.0

Total 7.00 100.0 - 100.0

3. Results factor, and two were factorially complex (meanmg they

Table 1 shows the 1ntercorrelatlon ‘matrix of- the
variables. To ensure proper application”of ' this-tech-

nique, we mspected several 1ndrc‘es' Su‘c'h‘-as the KMO :

ity. The KMO measureis‘a’ measure of samphng ade-

quacy. Generally, thlS 1nd1cator should be ‘0.5 or

Bartlett’s test of spher1c1
vanance and covanance

diagonal, and zeros in the off diage
case, then the varlables

data. Bartlett’s test.of sphericity was 62.244 (p < 0.05),
1ndlcat1ng that a factor analy51s was .appropriate.

Two factors were extracted with approximately 65%
of the variance explamed (Table 2). Since the third
factor ,had .an eigenvalue, of 0.98 and would possibly
contr1bute .an additional .14% _of variance, a second
analysis was completed forcmg the ,extractlon of three
factors. However, examination of this third extracted
factor showed that only a single variable loaded on that
factor (a specific, not common factor). Since factors
must contain a minimum of two items to remain a
common factor, the original analysis was retained with
two factors. A scree plot was generated, confirming the
two-factor solution. »

Table 3 shows the rotated factor pattern matrix from
varimax rotation. A factor loading represents the corre-
lation between a variable and a factor. A positive
loading indicates activation of a muscle. A negative
loading indicates lack of neuromuscular activation. Us-
ing a standard of a factor loading equal to 0.40, five
muscles had salient loadings on one and only .one

: If this were the
be co pfetely unrelated .
and a factor’ analy51s is 1nappropr1ate for this type of

had salient loadings on more than oné" factor). To
facilitate geometric representation of the factors and
variables, we identified the factors as the axes, and
plotted the variables according to their loadings on-
each factor. Figs. 1 and 2 show these representations.
Variables that lie close to an axis are more "highly
related to that factor. Those variables that lie in be-
tween the axes are factorially complex.

Factor one was composed of the RTA, RBF, LSCM,
RGA and LES. ‘Transition control’ was selected as the
label for this fdactor, because these five muscles function
for the'control of weight transition from one lower limib
to another. The 'RRF, RTA;NE and LES loaded on
factor two. ‘Loading™ was”the ‘selected label for'this
factor because the predominant bursts ofactivity asso-

‘ ciated with these three”muscles occur -at -the loading
- portion of the gait cycle (i.e. during weight ‘acceptance:

- and bearing). The RTA and LES had salient loadings
- -on beth *facters (i.e. factorially complex),” suggestlng

“that these muscles play a substantial role'in more than
one aspect of the gait cycle.

4. Discussion

RO

Factor ana1y81s groups vanables 1nto underlymg di-
mensions which can be used to explam phenomena in a

Table 3
Matrix of factor loadings after varimax rotation

Muscle Factor | Factor 2
RTA 0.868 0.411
RBF 0.862 0.182
LSCM 0.790 —0.246
RGA —0.649 ~0.018
RRF —-0.129 0.794
NE 0.128 0.753
LES 0.468 0.523

LES. left erector spinae; LSCM, left sternocleidomastoid: NE, neck
extensors; RBF. right biceps femoris; RGA, right medial gatrocne-
mius: RRF, right rectus femoris; RTA, right tibialis anterior.
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Fig. 1. Geometrical representation of Variables on factor 1.

set of data. In the social sciences it is traditionally used

for testing construct*validity or-data reduction. Yet, its-

application -in' motor :Control can~be very valuable. Tii:

this paper;: wehavedemonstrated how to use factor -

analysis ‘to -identify- coordinated - activation patterns-
across muscles . during llotomiotion 'which otherwise
would-have remained 6bscuredi4ising more traditional
single muscle analyticitechniques:«The;resolved. factors
have offered:a unique lookrat the.neuromusctlar activ-
ity among the: musculaturei:ofsthe shank, leg; lower
back and neck that supports:
sidering-the

1mportant to.also include this musculature in;an. analy-

body musculature it . s the complex coordmatlon w1th
trunk and neck musculature that allows us to remaln
upright and walk smoothly and efﬁc1ently to, .our 1n-
tended destination, Factor analys1s based upon a hnear
summation of orthogonal factors isa s1mphﬁed repre-
sentation of the complex non hnear nature of the loco-
motor apparatus.

Since EMG was the sour¢e of information and is a
reflection of neurofﬁusculaf’corit'rol, the factors reflect
how muscles are activated and deactivated in certain
patterns to effect a coordinated segmental motion. Us-
ing the activation patterns of seven muscles, principal
components analysis extracted two orthogonal factors

dinated walking.. Con-,, :
ole that the meck-and trunk musculature'._-x
plays -in, mamtammg head andstrunk,stability,.it, was.

aligned with 65% of the variance representing indepen- -

dent clusters of coordinated patterns of muscle activa-

' tion during ‘walking: If we agree with the notion of

Bernstein- (1967) that effective locomotion requires a
whole-body synergy, then these two factors..can be

interpreted as representing two components of the total

neuromuscular activation required to achieve this
whole-body synergy:=The individual factors can be in-
terpreted: as -unique. control-signals supperting:coordi-

-nated segmental motion. ‘Within Bernstein’s conception

-.0f degrees- of; freedom, the clustering oftmuscles ento
.. factors suggests a reduction in-.degrees of . freedom

necessary, to control coordinated walking,
Each, factor .was interpreted- based upon var1ab1e
loadings and the, biomechanical function of the: muscles_.v

.. withiny each factor. The factor structure was parsimo-
.nious, and most. Varlables loaded on only one. factor,

.To ease, mterpretamon of factors, mean waveforms for
“each muscle are shown in Fig. 3. The RTA RBF

| "LSCM, RGA, and LES comprised the first factor The

RBF and RTA act in a coordmated fashlon for toe

Aclearance The RBF contracts, concentncally for knee

_ "ﬁex1on while the RTA contracts to dorsiflex the foot for

right toe clearance as Welgh.t 1s shifted to the left foot.

The High negative loading on the RGA Teflects the’
coordinated inhibition of activity after vpropulsmn nec-
essary for toe clearance. The RGA activity ceases in

‘order for the RTA to effectively dorsiflex the foot to

prevent tripping. 'The LES, during this transition, is
active to stabilize the trunk as the body’s weight is
shifted from the right side to the left, and to prevent
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excessive forward: tmnl_c ro tiég‘,n‘. Th
loads on this factor. This muscl i

likely responsible

al., 1990). Collectlvely, thlS group-:: fi activation: ;pat=

terns, including muscles from: the. shank, leg, trunk .

and neck, indicate that complex aectivation patterns
from -throughout the body are required to efficiently
transfer body weight. Therefore this factor was inter-
preted -as-“transition control’. ‘ :
Factor one illustratés how factor analysis works. to
identify ‘rélationships-*which -ar€ *not obvious from
evaluation- of~‘individual**muscle “activation patterns.
One wouldnot’ commonly link ° “LSCM activity with
that of the leg-and trunk:” Yét, the 'LSCM shares a
commonahty with' the’ other fiiiiscle that load on this
factor. The actmty assocxated w1th the LSCM is con-
trol of lateral head movements as Welght shlfts (Wm-
ter et al, 1990). Therefore this muscle
precisely coordmated “with the act1v1ty of the RBF
RGA, RTA and LES to stabilize the trunk and head

"~ and help maintain gaze during locomotlon durmg the

transition of wetght

For factor two, the peak activity of the RRF oc-.'

curs between 95 and 5% of the gait cycle (the interval
around heelstrike). RRF contracts to decrease for-
ward knee rotation at right heelstrike. The RTA con-
trols lowermg the toe to the ground. The LES again

0.2 0.4 0.6

—1 Factor 1
0.8 1 )

. Geometrical representation of variables on factor 2.

functions - to control, anterior and posterior trunk
~movement.. The NE contracts to prevent excessive
- .pitch motion«of the head. These specific functions as-
. Sist in; controel of the, early stance portion of the stride
~cycle; hence;:this:factor was: labeled ‘loading’. ,
. Although:the: LES, LSGM and.NE are.not. directly
-involved.iin': generating -franslation, ~their - coordination -
with musclessthat are.directly involved:in:translation
- insures:adequate . trurik ‘control* and 'maintenance of
dynamic balance. This sgrouping of coordinated activ-
ity might- normally be overlooked using traditional -
EMG analysis methods. The salient loadings of the
trunk and neck muscles on factors with the lower
limb musculature suggest that they are tightly coupled
with leg muscle activation and with each transfer of
weight to fine-tune the stabilization of the head, arms
and trunk, and to attenuate head ‘accelerations (Win-
ter et al., 1990, 1993). ' :
The different types ‘hnd number of muscles used in
a factor ana1y51s Wlll have an ‘effect on the outcome
of the analysis. This’ explains why there are several
differences between the factors identified in the
present study and past work; different sets of muscles
were used. Davis and Vaughan (1993) and Olree and
Vaughan (1995) sampled 16 lower limb muscles (eight
bilateral pairs) and extracted three to four factors,
where we sampled seven muscles (unilateral) and ex-
tracted two factors. Our investigation also included
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Fig. 3. Mean activation waveforms of the seven muscles sampled.

muscles from the trunk and neck. Differences in
where muscles load are also the result of the different
number and types of muscles sampled. Since the anal-
ysis is built upon the relations among muscles, then
the use of more or less muscles in the matrix will
effect the results. Predictably, different relationships
were found among the set of muscles in this study
than those seen previously. It should also be noted
that had we analyzed EMG patterns obtained during
free locomotion we may have found somewhat differ-
. ent loadings. Remembering that the analysis is built
upon intercorrelations, different patterns associated
with free versus treadmill locomotion would slightly

alter the relationships among the muscles and there-
fore affect the loadings.

Since forces generated at one joint are continually
being transferred to other joints and additional en-
ergy is being absorbed at each heelstrike, it is impor-
tant to consider how other muscles throughout the
body are coordinated with the lower limb muscula-
ture to ensure appropriate segmental motion. The
present results demonstrate that factor analysis can be
used to explore relations among muscle patterns
across all body segments to more fully understand the
complex coordination necessary for smooth and effi-
cient locomotion.
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