Seoung Hoon Park, Ph.D.

Assistant Professor of Health and Human Performance University of Houston

> Email: shpark5@uh.edu Mailing: 3875 Holman St. Rm 104 Garrison Houston, TX 77204-6015 Phone: +1 713-743-5291 Lab website: MoNeLab.net

EDUCATION

Postdoctoral Training in Neurorehabilitation	2019-2022
Shirley Ryan AbilityLab and Northwestern University Mentor: Ming Wu	Chicago, IL, USA
Ph.D., Kinesiology – Motor Neuroscience	2014-2019
Dissertation: Low-frequency Oscillations in Force Output - Relevance to He stroke Older Adults Mentor: Evangelos A. Christou	althy and At-risk-for-
M.S., Kinesiology – Motor Learning and Control Seoul National University Thesis: Differential contribution of visual and auditory information to accurat and rotational motion of a visual stimulus Advisor: Seonjin Kim	2010-2012 Seoul, South Korea ely predict the direction
B.S., Kinesiology Seoul National University * 2-year compulsory military service (2005 - 2007)	2004-2010 Seoul, South Korea
PROFESSIONAL EXPERIENCE	
Presidential Frontier Faculty Assistant Professor on Tenure Track Department of Health and Human Performance Department of Communication Sciences and Disorders Department of Clinical Sciences University of Houston	2022-Date
Postdoctoral Research Fellow Legs + Walking Lab, Shirley Ryan AbilityLab Department of Physical Medicine and Rehabilitation, Northwestern Universi	2019-2022 Chicago, IL, USA ty
Graduate Assistant Department of Applied Physiology and Kinesiology, University of Florida	2014-2019 Gainesville, FL, USA
Graduate Assistant	2010-2012

Seoul, South Korea

Motor Behavior Laboratory, Seoul National University

RESEARCH FOCUS

- Neurophysiological mechanisms responsible for impaired motor control and learning in older persons and individuals with neurological diseases (stroke; spinal cord injury; cerebral palsy)
- Developing neurorehabilitation tools and protocols for improving motor control and function with emphasis on walking and balance in people with neurological diseases
- Behavioral and neural changes in response to rehabilitative interventions in individuals with neurological diseases

RESEARCH PUBLICATIONS

Peer-reviewed Journal Publications

- 24. **Park SH**, Yan S, Dee W, Reed R, Rymer WZ, & Wu M. Intermittent versus continuous adaptation to pelvis assistance during walking improves mediolateral balance in people with spinal cord injury. *Experimental Brain Research*. 2025. (10.1007/s00221-024-06971-z).
- 23. <u>Park SH</u>, Yan S, Dee W, Reed R, Roth EJ, Rymer WZ, & Wu M. Enhanced phasic calf muscle activation with swing resistance enhances propulsion of the paretic leg in people post-stroke. *Journal of Neurophysiology. 2024. (10.1152/jn.00485.2023).*
- Yan S, <u>Park SH</u>, Dee W, Reed R, Rojas A, Rymer WZ & Wu M. Motor adaptation to continuous lateral trunk support force during walking improves trunk postural control and walking in children with cerebral palsy: A pilot study. *Human Movement Science*. 2024. (10.1016/j.humov.2024.103258).
- 21. Yan S, <u>**Park SH**</u>, Dee W, Reed R, Rojas A, Rymer WZ & Wu M. Trunk postural reactions to the force perturbation intensity and frequency during sitting astride in children with cerebral palsy. *Experimental Brain Research*. 2024. (10.1007/s00221-023-06744-0).
- 20. **Park SH**, Yan S, Dee W, Reed R, Roth EJ, Rymer WZ, & Wu M. Overground walking with a constraint force on the non-paretic leg during swing improves paretic propulsion and walking speed in people post-stroke. *Journal of Neurophysiology*. 2023. (10.1152/jn.00008.2023).
- Yan S, <u>Park SH</u>, Reed R, Dee W, Rojas A, Rymer WZ & Wu M. Improving trunk postural control facilitates walking in children with cerebral palsy. *American Journal of Physical Medicine and Rehabilitation.* 2023. (10.1097/PHM.0000000002206).
- Park SH, Dee W, Keefer R, Roth EJ, Rymer WZ, & Wu M. Enhanced phasic sensory afferents paired with controlled constraint force improve weight shift toward the paretic side in individuals post-stroke. *Journal of Stroke and Cerebrovascular Diseases*. 2023 (10.1016/j.jstrokecerebrovasdis.2023.107035).
- Park SH, Lin J, Dee W, Keefer R, Rymer WZ, & Wu M. Swing-phase pelvis perturbation improves dynamic lateral balance during walking in individuals with spinal cord injury. *Experimental Brain Research.* 2023 (10.1007/s00221-022-06507-3).
- Park SH, Yan S, Dee W, Reed R, Roth EJ, Rymer WZ, & Wu M. Repeated adaptation and de-adaptation to the pelvis resistance force facilitate retention of motor learning stroke survivors. *Journal of Neurophysiology*. 2022 (*doi: 10.1152/jn.00046.2022*).

- Park SH, Hsu C, Dee W, Roth EJ, Rymer WZ, & Wu M. Enhanced error facilitates motor learning in weight shift and increases use of the paretic leg during walking at chronic stage after stroke. *Experimental Brain Research*. 2021 (*doi: 10.1007/s00221-021-06202-9*).
- 14. <u>Park SH</u>, Hsu C, Lin J, Dee W, Roth EJ, Rymer WZ, & Wu M. Increased motor variability facilitates motor learning in weight shift toward the paretic side during walking in individuals post-stroke. *European Journal of Neuroscience*. 53, 3490-3506, 2021 (*doi: 0.1111/ejn.15212*).
- Park SH, Hsu C, Dee W, Roth EJ, Rymer WZ, & Wu M. Gradual adaptation to pelvis perturbation during walking reinforces motor learning of weight shift toward the paretic side in individuals post-stroke. *Experimental Brain Research*. 239, 1701-1713, 2021 (*doi:* 10.1007/s00221-021-06092-x).
- Park SH, Lin J, Dee W, Hsu C, Roth EJ, Rymer WZ, & Wu M. Targeted Pelvic Constraint Force Induces Enhanced Use of the Paretic Leg During Walking in Persons Post-Stroke. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*. 28(10), 2184-2193, 2020 (doi: 10.1109/TNSRE.2020.3018397).
- Casamento-Moran A, Delmas S, Park SH, Yacoubi B, & Christou EA. Reaction to a visual stimulus: Anticipation with steady and dynamic contractions. *Journal of Human Kinetics*. 69(1), 17-27, 2019 (doi: 10.2478/hukin-2019-0025).
- Park SH, Wang Z, McKinney W, Khemain P, Lui S, Christou EA, & Mosconi NW. Functional Motor Control Deficits in Aging Fragile X Mental Retardation 1 Premutation Carriers. *Experimental Brain Research*. 237(9), 2269-2278, 2019 (*doi: 10.1007/s00221-019-05566-3*).
- Park SH, Kim C, Yacoubi B, & Christou EA, Control of oscillatory force tasks: low-frequency oscillations in force and muscle activity. *Human Movement Science*. 64, 89-100, 2019 (*doi:* 10.1016/j.humov.2019.01.009).
- Park SH & Kwon M. The effect of trial-to-trial variability during practice of force control tasks on motor learning. *Journal of Korean Society for the Study of Physical Education*. 23(2), 127-136, 2018 (doi: 10.15831/JKSSPE.2018.23.2.127).
- Delmas S, Casamento-Moran A, <u>Park SH</u>, Yacoubi B, & Christou EA. Motor planning perturbation: muscle activation and reaction time. *Journal of Neurophysiology*, 120, 2059-2065, 2018 (*doi: 10.1152/jn.00323.2018*).
- Ernster AE, <u>Park SH</u>, Yacoubi B, Christou EA, Casamento-Moran, Singer ML, & Humbert IA. Motor transfer from the corticospinal to the corticobulbar pathway. *Physiology & Behavior*, 191, 155-161, 2018 (*doi: 10.1016/j.physbeh.2018.04.016*).
- Park SH, Casamento-Moran A, Singer ML, Ernster AE, Yacoubi B, Humbert IA, & Christou EA. Integration of Visual Feedback and Motor learning: Corticospinal vs. Corticobulbar Pathway. *Human Movement Science*, 58C, 88-96, 2018 (*doi: 10.1016/j.humov.2018.01.002*).
- 4. **Park SH**, Casamento-Moran A, Yacoubi B, & Christou EA. Voluntary reduction of force variability via modulation of low-frequency oscillations. *Experimental Brain Research*, 235, 2717-2727, 2017 (*doi: 10.1007/s00221-017-5005-5*).
- <u>Park SH</u>, Kwon M, & Christou EA. Motor output oscillations with magnification of visual feedback in older adults. *Neuroscience Letters*, 647, 8-13, 2017 (*doi:* 10.1016/j.neulet.2017.03.011).

- Park SH, Kwon M, Solis D, Lodha N, & Christou. EA. Motor control differs for increasing and releasing force. *Journal of Neurophysiology*, 115 (6), 2924-2930, 2016 (*doi:* 10.1152/jn.00715.2015).
- <u>Park SH*</u>, Kim SJ, Kwon M, & Christou EA. Differential contribution of visual and auditory information to accurately predict the direction and type of stimulus. (*corresponding author) *Applied Physiology, Nutrition, and Metabolism*, 41 (3), 235-243, 2016 (*doi: 10.1139/apnm-2015-0390*).

In Review:

- 2. Park H, Lee BC, Li S, Sayenko DG, & <u>Park SH*</u>. Transcutaneous spinal stimulation paired with visual feedback facilitates retention of improved weight transfer toward the affected side in people post-stroke. (*corresponding author)
- <u>Park SH</u>, Park H, Ahn J, & Lee BC. A Novel Adaptive Propulsion Enhancement eXperience (APEX) System: Development and Preliminary Validation for Enhancing Gait Propulsion in Stroke Survivors.

In Preparation:

- 7. Park H, Lee BC, Li S, Sayenko DG, & <u>Park SH</u>. Transcutaneous spinal stimulation paired with visual feedback facilitates retention of improved weight transfer toward the affected side in people post-stroke.
- 6. Park H, Lee BC, Li S, Sayenko DG, & <u>Park SH</u>. Effects of visually guided locomotor training paired with off-center transcutaneous spinal stimulation on weight transfer toward the paretic leg in people post stroke.
- 5. **Park SH**, Li S, & Sayenko DG. Influences of mediolateral postural perturbation paired with transcutaneous spinal stimulation on dynamic balance in individuals post stroke.
- 4. **Park SH**, Li S, & Sayenko DG. Effects of lateral postural perturbation on dynamic balance in people post stroke.
- 3. **Park SH**, Park H, Ahn J, & Lee BC. Instrumented treadmill-based propulsion-inducing multimodal training system for post-stroke gait rehabilitation: development and preliminary assessment.
- 2. **Park SH**, Maeng H, Kim K, & Sayenko D. Does transcutaneous spinal cord stimulation improve walking in individuals with spinal cord injury? A meta-analysis.
- 1. **Park SH**, Yan S, Dee W, Reed R, Rymer WZ, & Wu M. Phase-dependent versus constant sensory stimulation with pelvis assistance force enhances locomotor adaptation and reduces step-to-step variability in people with spinal cord injury.

OTHER PUBLICATIONS

Peer-reviewed Conference Proceedings:

 <u>Park SH</u> & Lee BC. Development and preliminary evaluation of a real-time multiple assistance system for asymmetric gait rehabilitation using an instrumented treadmill, 24th International Conference on Control, Automation and Systems (ICCAS), 947-952, 2024

RESEARCH FUNDING

Ongoing (external):		
Research Grant Neuromeka Co., Ltd. <i>Revolutionizing a treadmill-based fall prevent</i> Role: Co-Investigator	Lee (PI)	8/2024-7/2025 \$ 4,500
Ongoing (internal):		
Start-up funds University of Houston Role: Principal Investigator	Park (PI)	9/2022-12/2025 \$ 281,000
Research Progress Grant – Early Career University of Houston, College of Liberal Arts Influence of lateral postural perturbation on d Role: Principal Investigator	Park (PI) and Social Sciences ynamic balance post-stroke	1/2025-12/2025 \$ 4,000
Pending:		
NIH-NICHD R03HD117062-01 National Institutes of Health <i>Influence of lateral postural perturbation paire</i> <i>dynamic balance post-stroke</i> Role: Principal Investigator	Park (PI) ed with transcutaneous spinal stim	12/2024-11/2026 \$ 344,120 nulation on R03HD117062-01
In Review:		
NICHD, EDR Grant (R21) National Institutes of Health Influence of phasic transcutaneous spinal stir in individuals post-stroke Role: Principal Investigator	Park (PI) mulation paired with visually guide	2025/12-2027/11 \$ 413,838 ed weight transfer
NIH-NICHD R03HD117062-01A1 National Institutes of Health Influence of lateral postural perturbation paire dynamic balance post-stroke Role: Principal Investigator *R	Park (PI) ed with transcutaneous spinal stim Resubmission	7/2025-6/2027 \$ 344,122 nulation on

In Preparation:

TIRR Mission Connect Founders Neurotrauma Research Award	Park (PI)	2025/7-2026/6
TIRR Foundation Influence of phasic transcutaneous	spinal stimulation paired with vis	\$ 100,000 ually guided weight transfer
Role: Principal Investigator	*Invited for submission	
CTPH CTS Pilot Award Consortium for Translational and Pr <i>Influence of phasic transcutaneous</i> <i>in individuals post-stroke</i>	Park (PI) ecision Health spinal stimulation paired with vis	8/2025-12/2025 \$ 50,000 ually guided weight transfer
Role: Principal Investigator	*Invited for resubmission	
NIH R21 (TBD)	Park (PI)	2025-2027
Constraint-induced movement thera Role: Principal Investigator	apy for over-ground walking in pe	ople post stroke
NIH R21 (TBD)	Lee (PI)	2025-2027
National Institutes of Health Instrumented Treadmill-Based Prop Gait Rehabilitation Role: Co-Principal Investigator	ulsion-inducing Multimodal Train	Amount TBD ing System for Post-stroke
Completed / Previous Support:		
Research Progress Grant – Early Career University of Houston, College of Lil Effects of improved lingual motor co Role: Principal Investigator	Park (PI) beral Arts and Social Sciences ontrol on swallowing in dysphagia	1/2023-6/2024 \$ 4,000 a following stroke
NIH-NICHD, R01HD083314	Wu (PI)	1/2021-6/2022
National Institutes of Health Improved dynamic lateral balance o Role: Postdoc Research Associate	f humans with SCI	
NIH-NINDS, R01NS115487	Wu (PI)	3/2021-6/2022
National Institutes of Health <i>Neuromuscular mechanisms of spe</i> Role: Postdoc Research Associate	cific trunk interventions in childre	n with cerebral palsy
NIH-NICHD, R01HD082216	Wu (PI)	8/2019-3/2021
National Institutes of Health <i>Constraint induced movement thera</i> Role: Postdoc Research Associate	py for walking in individuals post	stroke
NIH-NINDS, R21NS096258 National Institutes of Health <i>Motor control deficits following trans</i> Role: Graduate Research Associate	Christou (PI) sient ischemic attack	9/2016-8/2019

Not Funded Applications:

AHA Innovative Project Award American Heart Association Lateral postural perturbation improves of Role: Principal Investigator	Park (PI) dynamic balance in individu *LOI submitted	7/2025-6/2027 \$ 200,000 vals post-stroke
CTPH CTS Pilot Award Consortium for Translational and Precis Influence of phasic transcutaneous spir in individuals post-stroke Role: Principal Investigator	Park (PI) sion Health nal stimulation paired with v	1/2025-7/2025 \$ 49,132 isually guided weight transfer
DoD, PD240124 Department of Defense <i>Transcutaneous Spinal Cord Stimulatio</i> <i>Disease</i> Role: Principal Investigator	Park (PI) In for the Treatment of Gait	2025-2027 \$ 499,916 and Posture in Parkinson's
NINDS/NIMH, R21NS140980-01 National Institutes of Health <i>Transcutaneous Spinal Cord Stimulatio</i> <i>Disease</i> Role: Co-Investigator	Thrasher (PI) In for the Treatment of Gait	2025-2026 \$ 442,498 and Posture in Parkinson's
Equipment Grant University of Houston, Division of Rese <i>Collaboration to Develop EEG-guided I</i> <i>Prevention in Stroke Survivors</i> Role: Co-Principal Investigator	Parikh (PI) arch Von-invasive Stimulation-ba	2024-2025 \$ 36,165 ased Therapies for Fall
NIDILRR, Switzer Fellowship Administration for Community Living Improve dynamic balance of individuals Role: Principal Investigator	Park (PI) with hemiplegic stroke	2023-2024 \$ 70,000
NIH-NICHD, R03HD113885-01 National Institutes of Health Influence of lateral postural perturbation dynamic balance post-stroke Role: Principal Investigator	Park (PI) n paired with transcutaneou	2023-2025 \$ 155,000 s spinal stimulation on
AHA Postdoctoral Fellowship American Heart Association Effect of enhanced motor activity and s people post stroke Role: Principal Investigator	Park (PI) ensory feedback during wa	2022-2024 \$ 140,952 Iking with constraint force in
NIDILRR, Switzer Fellowship Administration for Community Living Application of constraint force paired with individuals post stroke Role: Principal Investigator	Park (PI) ith transcutaneous electrica	2021-2022 \$ 70,000 I stimulation for walking in
AHA Postdoctoral Fellowship American Heart Association Application of constraint force paired wi individuals post stroke Role: Principal Investigator	Park (PI) ith transcutaneous electrica	2021-2023 \$ 134,236 I stimulation for walking in

NIDILRR, Switzer Fellowship

Park (PI)

2020-2021 \$ 70,000

Administration for Community Living \$70,000 Application of constraint force paired with enhanced sensory feedback induces forced use of the paretic leg and improves gait symmetry in individuals post-stroke Role: Principal Investigator

TEACHING EXPERIENCE

Course Teaching:

- **Motor Learning and Control KIN 4315.** Teach the undergraduate course in the HHP program at the University of Houston. 2023-date.
- **Measurement Techniques in Human Performance KIN 4310.** Teach the undergraduate course in the HHP program at the University of Houston. 2025-date.
- **Biomechanics KIN 3990.** Teach the undergraduate course in the HHP program at the University of Houston. 2024.
- Applied Human Anatomy APK 2100 & 2100C. Teach three 3-hour undergraduate courses per semester in the APK program at the University of Florida. 2014-2019.
- Swimming and Weight Training (051.012, 051.014, & 051.018). Teach the undergraduate courses in the kinesiology program at Seoul National University. 2013-2014.

ACADEMIC COMMITTEES

University of Houston

Member:

Ph.D. committee for Ruiqing Fan (2022-date; mentor: Ashwini Joshi)

- Ph.D. candidacy committee for Dacia Martinez Diaz (2024; mentor: Charles Layne)
- Ph.D. candidacy committee for Komal Kukkar (2023; mentor: Pranav Parikh)

MENTORSHIP

Graduate Students:

- **2022-Date University of Houston** Hyunje Park (2024-date) Christian Doxakis (2024-date; co-supervisor; mentor: Adam Thrasher)
- 2019-2022 Shirley Ryan AbilityLab & Northwestern University Alessandro Gozzi (2021-2022) Iram Hameeduddin (2021-2022)
 *Mentored in Ming Wu's lab
- 2014-2019 University of Florida Yoonjin Choi (2018-2019) Delmas Stefan (2017-2019)
 *Mentored in Evangelos Christou's lab

Undergraduate Students:

- 2022-Date University of Houston
 Adriele Rivera (2024-date)
 Nhat Nguyen (2023-date)
 Ria Kolluru (2023-date)
 Yasmeen Elfeki (2023-2024; 2024 SURF)
 Celeste Contreras (2023-2024)
 Tracy Akinyode (2023-2024)
 Nicholas Macias (2023-2024; 2023 SURF & 2024 PURS)
- 2014-2019 University of Florida Michelle Weintraub (2019) Austin Wilson (2018-2019) Alexandra Pepin (2018) Shan He (2014-2015)
 *Mentored in Evangelos Christou's lab

INVITED PRESENTATIONS

- Effects of perturbation-based locomotor training on gait in individuals post-stroke. Neuromotor Skill Advancement for Post-baccalaureates (NSAP) Seminar, University of Houston, Houston, USA, 2024.
- Effects of perturbation-based locomotor training on walking and balance in people post-stroke. Institute of Sport Science, Incheon National University, Incheon, South Korea, 2023.
- Perturbation-based locomotor training for individuals post-stroke. Department of Biomedical Engineering, University of Houston, Houston, TX, USA, 2023.
- Perturbation-based locomotor training for individuals post-stroke. International Research Symposium, Taean AI Industry Promotion Agency, South Korea, 2023.
- Applying lateral pelvis resistance versus assistance during walking enhances weight shift and use of the paretic leg in individuals post-stroke. Grand Rounds, Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA, 2021.
- Does constraint-induced forced use of the affected leg during locomotor practice improve walking performance in individuals post-stroke? Korean Society of Sport Biomechanics International Conference, Chuncheon, South Korea, 2020.
- Low-frequency oscillations and control of steady force. Human Movement Science Seminar, Seoul National University, Seoul, South Korea, 2019.

CONFERENCE PRESENTATIONS

National/International:

 Park H, Lee BC, Li S, Sayenko D, & <u>Park SH</u>. Phasic transcutaneous spinal stimulation paired with visual feedback improves weight transfer toward the affected side in stroke survivors. *Patricia Levy Zusman International Workshop on Neuroregeneration*. 2025.

- 23. <u>Park SH</u> & Lee BC. Development and preliminary evaluation of a real-time multiple assistance system for asymmetric gait rehabilitation using an instrumented treadmill. *24th International Conference on Control, Automation and Systems (ICCAS)*, 2024.
- 22. Macias N & <u>Park SH</u>. Effects of lateral postural perturbation on dynamic balance in people poststroke. *Society for Neuroscience*, 2024.
- 21. <u>Park SH</u>, Yan S, Dee W, Keefer R, Roth E, Rymer W, & Wu M. Enhanced phasic calf muscle activation with swing resistance enhances propulsion of the paretic leg in people post-stroke. *Society for Neuroscience*, 2023.
- 20. **Park SH**, Maeng H, & Kim K. Does transcutaneous spinal cord stimulation improve walking in individuals with spinal cord injury? A meta-analysis. *ACSM Annual Meeting*, 2023.
- 19. **Park SH**, Yan S, Dee W, Keefer R, Rymer W, & Wu M. Intermittent adaptation to pelvis perturbation during walking enhances retention and generalization of improved weight transfer in people with spinal cord injury. *Society for Neuroscience*, 2022.
- 18. <u>Park SH</u>, Yan S, Dee W, Reed R, Roth E, Rymer W, & Wu M. Repeated locomotor adaptation and de-adaptation facilitate retention of motor learning during walking in individuals post-stroke. *Society for Neuroscience*, 2021.
- 17. Yan S, <u>**Park SH</u>**, Reed R, Dee W, Rojas AM, Rymer WZ, & Wu M. Trunk support improves treadmill walking in children with cerebral palsy. *Society for Neuroscience*, 2021.</u>
- 16. <u>Park SH</u>, Dee W, Reed R, & Wu M. Application of constraint force paired with enhanced sensory feedback induces forced use of the paretic leg and improves gait symmetry in individuals post-stroke. *International Society of Electrophysiology and Kinesiology*, 2020.
- 15. <u>**Park SH**</u>, Lin J, Dee W, Hsu C, Roth EJ, Rymer WZ & Wu M. Forced use of the affected leg during walking improves gait in individuals with stroke. *NASPSPA*, 2020.
- 14. <u>Park SH</u>, Kwon M, & Christou EA. Magnification of visual feedback alters modulation of motor neuron pool in older adults. *Society for Neuroscience*, 2019.
- 13. <u>**Park SH**</u>, Wang Z, McKinney W, Christou EA, & Mosconi MW. Functional motor control deficits in fragile x mental retardation 1 gene premutation carriers. *ACSM Annual Meeting*, 2019.
- 12. McKinney WS, Wang Z, **Park SH**, Christou EA, & Mosconi MW. Precision sensorimotor control in aging FMR1 premutation carriers. *Midwest Fragile X Research Exchange*, 2019.
- 11. **Park SH**, Kim C, Yacoubi B, & Christou EA. Control of dynamic force tasks: low-frequency oscillations in force and modulation of muscle activity. *Society for Neuroscience*, 2018.
- 10. Delmas S, Casamento-Moran A, <u>**Park SH**</u>, Yacoubi B, & Christou EA. Motor planning muscle activation patterns and reaction time. *Society for Neuroscience*, 2018.
- 9. Ernster AE, <u>**Park SH**</u>, Yacoubi B, Christou EA, Casamento-Moran, Singer ML, & Humbert IA. Cross-pathway transfer between the ankle and tongue. *Dysphagia Research Society*, 2018.
- 8. **Park SH**, Casamento-moran A, Singer ML, Ernster AE, Yacoubi B, Humbert IA, & Christou EA. Motor learning for corticospinal and corticobulbar pathways. *Society for Neuroscience*, 2017.
- 7. <u>Park SH</u>, Kwon M, & Christou EA. Motor output oscillations with magnification of visual feedback in older adults. *Progress in Motor Control,* 2017.
- 6. Delmas S, Casamento-Moran A, <u>**Park SH**</u>, Yacoubi B, & Christou EA. Motor output variability increases reaction time variability. *Progress in Motor Control,* 2017.

- 5. **Park SH**, Casamento-moran A, Yacoubi B, & Christou EA. Voluntary reduction of force variability via modulation of low-frequency oscillations. *Society for Neuroscience*, 2016.
- 4. Casamento-moran A, **Park SH**, Yacoubi B, & Christou EA. Low-frequency oscillations in force slow reaction time. *Society for Neuroscience*, 2016.
- 3. <u>Park SH</u>, Kwon M, Solis D, Lodha N, & Christou EA. Motor control differs for increasing and releasing force. *Society for Neuroscience*, 2015.
- Kim C, <u>Park SH</u>, Paez Cecilia, Moon H, & Christou EA. Low-frequency oscillations in force and muscle activity relate to force variability during sinusoidal tasks. *The 24th Annual Meeting of the Neural Control of Movement*, 2015. (Sole Presenter)
- 1. Kim HJ, Yang JH, Koo DH, <u>Park SH</u>, Jung YJ, Jeong DH, Park SY, & Seo JS. Effect of the Wingate-induced Muscle Fatigue on Coordination of Upper Limb During Reaching Task: Kinematic Analysis. *The 5th Asia-Pacific Conference on Exercise and Sports Science*, 2011.

Local/State:

- 26. Park H, Lee B-C, Li S, Sayenko D, & <u>Park SH</u>. Influence of phasic transcutaneous spinal stimulation paired with visually guided weight transfer in people post stroke. Mission Connect Scientific Symposium, The Institute for Rehabilitation and Research Foundation, 2024.
- Elfeki Y, Nguyen N, Kolluru R, & <u>Park SH</u>. Effects of perturbation paired with spinal stimulation on dynamic balance during walking in individuals post-stroke. Research Day, University of Houston, 2024.
- 24. Macias N & <u>**Park SH**</u>. Mediolateral perturbation performed during walking on post-stroke participants. Research Day, University of Houston, 2024.
- 23. <u>Park SH</u>, Lin J, Dee W, Hsu C, Roth EJ, Rymer WZ, & Wu M. Forced use of the paretic leg induced by a targeted resistance force applied to the pelvis during walking in individuals post-stroke. *Research Day, Northwestern University,* 2020.
- 22. <u>Park SH</u>, Wang Z, McKinney W, Christou EA, & Mosconi MW. Motor Control Deficits in Aging Fragile X Mental Retardation 1 Premutation Carriers. *Graduate Student Research Day, University of Florida,* 2019.
- Park SH, Wang Z, McKinney W, Christou EA, & Mosconi MW. Functional Motor Control Deficits in Aging Fragile X Mental Retardation 1 Premutation Carriers. 14th Annual Neuromuscular Plasticity Symposium, College of Public Health and Health Professions, University of Florida, 2019.
- 20. <u>Park SH</u>, Wang Z, McKinney W, Christou EA, & Mosconi MW. Functional Motor Control Deficits in Aging Fragile X Mental Retardation 1 Premutation Carriers. *The D. K. Stanley Lecture Series, College of Health & Human Performance, University of Florida,* 2019.
- Park SH, Kim C, Yacoubi B, & Christou EA. Steadiness of dynamic force tasks: low-frequency oscillations in force and muscle activity. *Graduate Student Research Day, University of Florida,* 2018.
- Park SH, Kim C, Yacoubi B, & Christou EA. Control of dynamic force tasks: low-frequency oscillations in force and modulation of muscle activity. 13th Annual Neuromuscular Plasticity Symposium, College of Public Health and Health Professions, University of Florida, 2018.
- 17. <u>Park SH</u>, Kim C, Yacoubi B, & Christou EA. Low-frequency oscillations in force and muscle activity during sinusoidal force tasks. *The D. K. Stanley Lecture Series, College of Health & Human Performance, University of Florida,* 2018.

- 16. <u>Park SH</u>, Casamento-moran A, Yacoubi B, & Christou EA. Voluntary reduction of force variability via modulation of oscillations in force from 0-1 Hz. *Graduate Student Research Day, University of Florida,* 2017.
- 15. Ernster AE, **Park SH**, Yacoubi BK, & Christou EA, Casamento-Moran A, Singer ML, Humbert IA. Test of cross-systems transfer between corticobulbar and corticospinal pathways during goal directed tasks of the tongue and ankle. *College of Public Healthy and Health Professions Research Day, University of Florida,* 2017.
- 14. <u>Park SH</u>, Casamento-moran A, Yacoubi B, & Christou EA. Voluntary reduction of force variability via modulation of oscillations in force from 0-1 Hz. *Annual Diversity Graduate Research Symposium, University of Florida,* 2017.
- 13. Delmas, S, Casamento-Moran, A, <u>**Park SH**</u>, Yacoubi B, & Christou EA. Anticipation and reaction time. *Undergraduate Research Day, University of Florida,* 2017.
- 12. <u>Park SH</u>, Casamento-moran A, Yacoubi B, & Christou EA. Voluntary reduction of force variability via modulation of oscillations in force from 0-1 Hz. *The D. K. Stanley Lecture Series, College of Health & Human Performance, University of Florida,* 2017.
- 11. **Park SH**, Casamento-moran A, Yacoubi B, & Christou EA. Voluntary reduction of force variability via modulation of oscillations in force from 0-1 Hz. *12nd Annual Neuromuscular Plasticity Symposium, College of Public Health and Health Professions, University of Florida,* 2017.
- 10. <u>Park SH</u>, Casamento-moran A, Yacoubi B, & Christou EA. Voluntary reduction of force variability via modulation of oscillations in force from 0-1 Hz. *Graduate Student Research Symposium, College of Health & Human Performance, University of Florida,* 2016.
- 9. <u>Park SH</u>, Neha Lodha, & Christou EA. Greater asymmetry in motor control for TIA. 11th Annual Neuromuscular Plasticity Symposium, College of Public Health and Health Professions, University of Florida, 2016.
- 8. **Park SH**, Neha Lodha & Christou EA. Greater asymmetry in motor control for TIA. *The D. K. Stanley Lecture Series, College of Health & Human Performance, University of Florida,* 2016.
- Park SH, Kwon MH, Solis D, Lodha N, & Christou EA. Motor control differs for increasing and releasing force. Graduate Student Research Symposium, College of Health & Human Performance, University of Florida, 2015.
- 6. **Park SH**, Kwon MH, Solis D, Lodha N, & Christou EA. Motor control differs for increasing and releasing force. *Graduate Student Research Day, University of Florida ,* 2015.
- Corti M, Casamento-Moran A, <u>Park SH</u>, Faris KJ, Piepenbrink B, & Christou EA, Subramony SH, Byrne BJ. Biomarkers in Friedreich's Ataxia: Identifying Appropriate Clinical Trial Endpoints. *CTSI Research Day*, *Clinical and Translational Science Institute, University of Florida*, 2015.
- 4. <u>Park SH</u>, Kim SJ & Christou EA. Different contribution of visual and auditory information to accurately predict the direction and type of stimulus. *The D. K. Stanley Lecture Series, College of Health & Human Performance, University of Florida,* 2015.
- Kim C, <u>Park SH</u>, Paez C, Lodha N & Christou EA. Low-frequency oscillations in force and muscle activity relate to force variability during sinusoidal tasks. *10th Annual Neuromuscular Plasticity Symposium, College of Public Health and Health Professions, University of Florida*, 2015.

- 2. <u>Park SH</u>, Kim SJ, & Christou EA. Differential contribution of visual and auditory information to accurately predict the direction and type of stimulus. *10th Annual Neuromuscular Plasticity Symposium, College of Public Health and Health Professions, University of Florida,* 2015.
- 1. <u>Park SH</u>. Differential Effect of Visual and Auditory Information on Response Accuracy. Graduate Student Research Symposium, College of Health & Human Performance, University of Florida, 2014.

PROFESSIONAL AFFILIATIONS

- Society for Neuroscience (SfN)
- Society for the Neural Control of Movement (NCM)
- North American Society for the Psychology of Sport and Physical Activity (NASPSPA)
- American College of Sports Medicine (ACSM)
- Progress in Motor Control (PMC)
- International Society of Electrophysiology and Kinesiology (ISEK)

HONORS AND AWARDS

National/International:

- Graduate Student Writing Award, American Kinesiology Association, USA, 2019.
- Predoctoral Outstanding Research Award, Association of Korean Neuroscientists, USA, 2017.
- The Korean Honor Scholarship, The Embassy of The Republic of Korea, USA, 2017.

University of Houston:

- Poster Excellence Award, Mission Connect Scientific Symposium, TIRR Foundation, Hyunje Park, 2024.
- Provost's Faculty Travel Fund, 2024.
- Faculty Excellence, <u>UH News</u>, 2024.
- Scholars Walk, Featured Faculty Member, 2024.
- Summer Undergraduate Research Fellowship. <u>Yasmeen Elfeki</u>, 2024.
- Provost's Undergraduate Research Scholarship. <u>Nicholas Macias</u>, 2024.
- Summer Undergraduate Research Fellowship. Nicholas Macias, 2023.
- Provost's Faculty Travel Fund, 2023.

Northwestern University & Shirley Ryan AbilityLab:

• 1st place Sarah Baskin Outstanding Research Award, 2021.

University of Florida:

- Dr. Stacy E. and Mr. Joseph T. Cutrono Conference Scholarship Award, 2019.
- Graduate School Doctoral Dissertation Award, 2019.
- C.A. Boyd Scholarship Award, 2018.
- Outstanding Academic Achievement, 2018.
- Dr. Christian W. Zauner Scholarship Award, 2017.
- Outstanding Academic Achievement, 2017.
- David & Linda McCaughey Endowed Scholarship Award, 2016.
- Outstanding Academic Achievement, 2016.
- Outstanding International Student Award, 2015.
- Outstanding Academic Achievement, 2015.
- Grinter Fellowship, 2014-2015.

Seoul National University:

- Honor and early graduation from undergraduate, 2010.
- Cum Laude, 2010.

RESEARCH SKILLS

Software and Statistical Techniques:

- MATLAB
- LabVIEW
- Processing Java programming
- Spike2
- Sony Vegas video editing software
- SigmaPlot scientific data graphing and statistical analysis software
- SPSS

Hardware and Data Collection Techniques:

- Surface Electromyography
- High-density Surface Electromyography and Decomposition
- Electroencephalography
- Inertia Measurement Units
- Motion Capture
- Force Plates
- Pressure Sensitive Walkway
- Instrumented Treadmill
- Load Cells
- Position Sensors
- Pressure Sensors
- Accelerometers
- Cable-driven Locomotor Training System
- Neuromuscular Electrical Stimulation
- Transcutaneous Electrical Stimulation
- Driving Simulator
- Eye Movement Tracking
- Lingual Control Measurement

EDITORIAL BOARD

• Korean Society of Sports Biomechanics

REVIEWER AD HOC

- Transactions on Neural Systems & Rehabilitation Engineering
- Transactions on Biomedical Engineering
- Journal of NeuroEngineering and Rehabilitation
- Neuroscience
- Neuroscience Letters
- Journal of Motor Behavior

- Frontiers in Physiology
- Physical Therapy
- Journal of Human Kinetics
- Research Quarterly for Exercise and Sport
- Brain Sciences
- Scientific Reports
- Frontiers in Human Neuroscience
- Plus One
- Experimental Brain Research

DEPARTMENTAL AND COLLEGE SERVICE

University of Florida:

- Undergraduate Research Award Committee, Department of Applied Physiology and Kinesiology, College of Health and Human Performance, 2018.
- President, Korean Student Association, College of Health and Human Performance, University of Florida, 2016 2017

University of Houston:

• Faculty Search Committee, Dept. of Health and Human Performance, 2023 - 2024