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ABSTRACT

We elaborate, in tutorial fashion, a theoretical framework
that originated from observations of phase transitions in
human movement coordination. Based upon theories of self-
organization and pattern formation in dissipative dynamical
systems (in particular, Haken's [1983] synergetics), this theo-
retical but operational language is aimed at understanding the
behavioral patterns produced by biological systems. The key
concepts are the identification of collective variables (or or-
der parameters) for behavioral patterns and the determina-
tion of their dynamics obtained through study of the stability
(and loss of stability) of behavioral patterns. Methods for cal-
culating stability measures are defined and discussed (e.g.,
fluctuations, relaxation times, time scale relations). Such
measures, when obtained in experiment, yield results that
agree with theoretical predictions. Behavioral information
is shown to contribute to the pattern dynamics, attracting the
system toward the (e.g., environmentally specified, intended,
learned) behavioral pattern. Such behavioral information is
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defined in the same space as the collective variables that
characterize the patterns and thus is meaningful and specific
to biological functions or tasks. Although dynamic pattern
theory (e.g., Kelso & Schoner, 1987; Schéner & Kelso, 1988a)
was formulated in the context of movement coordination,
other experimental systems (e.g., speech), other types of
“behavioral patterns (e.g., locomotory gaits, action-perception
patterns), and other levels of description (e.g., neuronal activ-
ity) are accessible to this level-independent approach.

PROLOGUE

This chapter is dedicated to the genius of the behavioral
physiologist Erich von Holst, whose unique contributions to
the understanding of coordinated behavior anticipated
current advances in the behavioral and brain sciences. As a
result of his extensive comparative studies of locomotion (2
miles of tracings!), von Holst (1939/1973, pp. 119-120)
synthesized the following rules, paraphrased for present
purposes:

1. Only a certain proportion of the extremely wide range of
behavioral forms is actually realized. The ones observed are
distinguished from others by their greater stability.

2. This stability is expressed in the fact that with smooth or
gradual alteration of internal or external conditions, periodic
forms maintain themselves until a critical limiting condition
‘is reached. Transference to another equilibrium relationship
occurs—usually abruptly—which is then maintained over a
particular range of conditions.

3. The stability that characterizes the periodic forms as a
whole does not apply to individual temporal subdivisions, in
which disequilibrium states are more likely to occur. These
disequilibria are exactly balanced within the temporal unit of
the entire period.

4, There is a general tendency towards transference to equi-
librium states of ever-increasing stability. The degree of sta-
bility increases with the simplicity of the frequency relation-
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The Dynamic Pattern Approach 5

ships. Increasing degree of complexity is accompanied by
decreasing stability.

As revealed in the present chapter, von Holst's rules can now
be cast in a theoretical language that has evolved over the last
decade (the mathematical concepts and tools of nonlinear dy-
namical systems), leading to testable predictions for specific
experimental model systems and deeper insights into the na-
ture of coordinated behavior.

The human brain possesses 1014 neurons and neuronal connec-
tions, is influenced by hundreds of active chemicals, and displays
highly complex patterns of electrical activity. New concepts and
tools are needed if the inherent complexity of the most complex
system of all—the brain and its relation to behavior—is to be un-
derstood. Presently, there is a huge void between what a single neu-
ron does (which we know a lot about) and what many of them do
when they cooperate. Why is it crucial to discover the principles of
coordination among large numbers of interacting components? The
answer is that this cooperative behavior lies at the root of under-
standing ourselves and the world we live in—how we touch, see,
hear, plan, and act. Such fundamental behavioral functions depend
on temporally coherent functional units distributed throughout
different regions of the brain and are not elucidated by standard

methods.

When we use the word how in this chapter, we mean the discovery or
identification of laws or principles of coordination at a chosen
level of observation (e.g., kinematic, muscular, neuronal). Given
that the nervous system is high-dimensional, as is the environment
within which nervous systems have evolved, laws of coordination
are expected to be instantiated at numerous scales of description.
Further, it is possible that the long sought for link between neu-
ronal activities (microscopic events) and behavior {macroscopic
events) resides in collective effects (pattern formation) at the
microscopic level that create macroscopic order (and disorder).
Thus, we view the problem of coordination as continuous with ef-
forts to understand pattern formation in complex systems with
many interacting components, in particular, Haken's (1975; 1983)
Synergetics, a theory of self-organization in nonequilibrium sys-
tems. In synergetics, methods have been found to compress system
complexity, for example, in various physical, chemical, and bio-
chemical systems that contain many degrees of freedom, to only
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1e or a few degrees of freedom, the "so-called order parameters,
hose dynamics (equations of motion) are low-dimensional
-aken's slaving principle). The beauty of the resulting dynamics,
aichrare in general nonlinear, is that they give rise to complex be-
wioral patterns, including multistability, multiple patterns,
xibility, and even deterministic chaos. Thus, the two seemingly
ametrically opposed views in science ‘of surface sn'nphcrLy arising
»m .deep complexity and surface complexity arising’ from deep
nplicity (Yates, 1987) are both, in fact, part and parcel of nature's
sign for complex systems (Kelso, 1988).

"course, the amount of information necessary to describe the in-
vidual states of neurons and muscles is very large, and ways must
found to select the relevant quantities to compress the amount of
formation (see also Haken, 1987). In the case of large-scale neu-
nal.systems like the brain, this is difficult to do if we treat the
ain'as a general purpose machine capable of producing arbitrary
itputs to arbitrary inputs. An alternative strategy, exemplified
rre, -is to treat the brain more as a "special purpose device"
uneson, 1977) that temporarily self-organizes for particular tasks
g.. Kelso & Scholz, 1985; Schoner & Kelso, 1988a; Sejnowski,
ch, & .Churchland, 1988). Many neurons, muscles, and joints
ust cooperate in the performance of behavioral functions. Evolv-

g-patterns- of activity among these components may best be
1derstood with respect to their functional significance for the or-
nism. Thus, we argue here, it is when the nervous system is in-
lved in performing certain behavioral tasks that one sees it
ving” in the low-dimensional space of order parameters. This is
1ere the laws of coordinated behavior lie.

sewhere, building on the concepts and tools of synergetics, we
ve elaborated an operational approach to biological coordina-
n that embraces both theory and experiment (Kelso & Scholz,
85; Kelso & Schoner, 1987, 1988; Kelso, Schéner, Scholz, &
iken, 1987;-Schoner & Kelso, 1988a, 1988b, 1988c). Rather than
scribe this "dynamic pattern” theory again, here we adopt a more
‘orial attitude intended to (a) communicate the essentials of the
proach, which involves a synergy between theory, computation,
d-experiment; and (b) demonstrate the broader significance of the
proach for understanding coordination in different experimental
stems and at different levels of description. Moreover, we show
namical laws are fundamental, in the sense of the need for
‘prior identification, if certain essentially biological and
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psychological functions such as learning, adaptation, anc
intentional behavioral change are to be better understood. Becaust
the language we use may be new to students of motor coordination
we present the essentials in a series of questions and answers, ¢
kind of dialogue. This language, we stress, is not at all a question o:
neologisms but rather emphasizes the operational character of the
approach, which requires that all theoretical constructs mus
explicitly relate to experiment. In this way, we think, scientists whc
study coordination, the collective behavior of many interacting
components, at different levels of description may communicate ir
an unambiguous fashion. Relatedly, as we shall show, the language
of nonlinear dynamics provides a way of - linking levels o:
description and many different phenomena.

Q. In any given experimental system, how do you identify the rele
vant degrees of freedom?

A. In biology, we don't know what the relevant degrees of freedor
are, a priori. In this sense, engineering or robotics approaches are
not especially helpful. The engineer designs the system and thus car.
explicitly define the degrees of freedom in terms of the type of actior.
possible for a given rigid segment. Depending upon the motion re-
quired and the number of orthogonal planes in which the motion is
executed, the degrees of freedom for a joint may vary from one tc
three. It is very tempting to view the body as a collection of mechan-
ical linkages in which one rigid part is connected to another witk
various restrictions on the motions possible. .

As the name implies, an aim of dynamie pattern theory is to iden-
tify the degrees of freedom corresponding to patterns, where the
word pattern is viewed always in terms of a particular function o
task. These patterns are not fixed by the conventions of mechanics
rather, they are flexibly assembled in order to -satisfy certair
boundary or task conditions. In speech, for example, there is gooc
evidence for certain constriction points (e.g., the closing of the lips.
preserving a tongue-palate relationship) that are erucial if a giver
sound is to be communicated (e.g., a /b/, a /p/, an /f/, or a /z/): The
relevant collective variable then, around which the many compo-
nents (e.g., jaw, lips, tongue, velum, and pharynx) are self-orga-
nized, is a task- or sound-specific constriction point (Abbs, Gracco,
& Cole, 1984; Kelso, Tuller, & Fowler, 1982; Kelso, Tuller, Vakaitos-
Bateson, & Fowler, 1984; see also Saltzman & Kelso, 1987).
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A key to the precise definition of degrees of freedom corresponding
to patterns is to find phase transitions, that is, situations in which
the system's behavior changes qualitatively. As one varies a task
dimension (in psychology we might say "manipulates an indepen-
dent variable," although, as we shall see, that language is not appro-
priate for a variety of reasons), many measurable quantities may
change smoothly or stay the same. Qualitative change, however, al-
lows one to clearly distinguish one pattern from another and en-
ables one to specify which dimension of the pattern is relevant. In
addition, differential effects of the transition make it possible to
study the relative stability of dilferent patterns. (For another
approach, which, however, does not study transitions as a tool for
understanding coordinated movement, see Kugler & Turvey, 1987))
From the dynamic pattern view, the discovery of a phase transition
enables one to identify the order parameter, or collective variable,
corresponding to the pattern itself, and the control parameter or
parameters that lead the system through these patterns. Control
parameters, in the dynamic pattern approach, are unspecific to the
resulting patterns; they carry no information whatsoever about the
pattern that emerges. Under continuous changes in a control
parameter, patterns may emerge spontaneously. In fact, this is a
signature feature of self-organization. That is, patterns arise solely
as a function of the dynamics of the system. There is no specific
ordering influence from the outside and no homunculus sitting
inside.

It is always crucial to establish theoretical notions in a concrete,
experimental situation. Thus, the discovery of phase transitions in
studies of human bimanual coordination formed the cornerstone of
dynamic pattern theory and more generally of the synergetic ap-
proach to biology (Haken, 1987). The observations were as follows:
Kelso (1981: 1984) had subjects rhythmically move their index fin-
gers or hands under two initial conditions, one in ‘which limb seg-
ments move in the same direction and electromyographic (EMG)
activity of pertinent muscles fires synchronously (homologous
muscles contracting in-phase) and an anti-phase condition in
which homologous muscles contract in an alternating fashion.
Through the use of a pacing metronome, frequency of oscillation
was:systematically increased. Figure 1.1 shows a time series when
the hands were prepared initially in the anti-phase mode. Obvi-
ously, at a certain critical frequency, switching occurs sponta-
neously from the anti-phase to the in-phase mode. This switch is re-
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Figure 1.1. Top: time series of left and right finger position; middle: point es-
timate of relative phase; bottom: EMG recordings of first dorsal interossei
. muscle for the left and right fingers (integrated and rectified).

flected in the point estimate of relative phase in the top graph in
Figure 1.1 as well as on a different level of description (EMG) in the
bottom graph of Figure 1.1. Ne switching in the reverse direction
- occurs when the subject starts in the in-phase mode. Thus, although
there are two stable patterns for low frequency values, only:one
pattern remains as frequency is scaled beyond a critical region.
This transition behavior can be monitored by calculation of-the
relative phase between the two fingers. A point estimate of relative
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phase is the latency of one finger with respect to the other finger's
cycle, as determined from peak-to-peak displacement. A continuous
estimate of relative phase (ie., at the sampling rate of 200 Hz) can be
obtained from the phase plane trajectories of both fingers (the
velocities may be obtained by a central difference numerical
differentiation procedure). When the finger oscillations are nor-
malized to the unit circle, the phases of the individual fingers can be
obtained from the arctangent (/) if x is normalized finger position
and x the velocity (see Kelso & Tuller, 1987). Relative phase is just
the difference between these individual phases. Often the relative
phase fluctuates before the transition and stabilizes thereafter (e.g.,
Kelso, 1984; Kelso & Scholz, 1085: see following discussion of

fluctuations).

What is the relevant degree of freedom in this case—or in the lan-
guage of dynamic patterns, what is the order parameter or collective -
variable? From our discussion of phase transitions, the relative
phase, ¢, is a suitable candidate because (a) ¢ characterizes all ob-
served coordinative patterns; (b) ¢ changes abruptly at the transi-
tion and is only weakly dependent upon parameters outside the
transition; and (c) ¢ has very simple dynamics in which the ordered,
phase-locked patterns correspond to attractors (we will define the
term attractor shortly). Because the prescribed frequency of oscilla-
tion, manipulated during the experiment, is followed closely (i.e., is
‘not affected by the relative phase) and because frequency drives the
system through the collective states, frequency may be considered

the control parameter.

In summary, we want to stress again that the phase transition
methodology allows one to identify relevant degrees of freedom.
Phase transitions represent singular boundaries that separate, as it
were, different realms of existence, in our case, movement patterns.
‘Nonegquilibrium phase transitions are a universal feature of all
complex systems; oscillating fingers are simply a window into es-
tablishing this fact for biological coordination.

Q. Once the relevant degrees of freedom or order parammeters are
found empirically, how do you model?

A. A first step is to provide a mathematically accurate description
of:the main qualitative features of one's data. The key idea is to map
rved patterns onto attractors of a dynamical model. The mean-
~dynamical here has nothing to do with forces or masses in the
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conventions of mechanics; rather, it refers to the temporal evolu-
Hon of (in our case) a collective variable, that is, how this variable
changes or stays the same as time flows (formally, the flow of a vec-
tor field). Given that we have identified a relevant degree of freedom,
x, characteristic of the pattern, underlying the dynamic pattern
view is the assumption that x = x(f), where t is time, obeys a dynami-
cal law:

x = f(x, parameters, noise) - (1)

For a large class of functions f, special solutions of Equation (1) ex-
ist called attractors. By definition, an attractor is asymptotically
stable; that is, all neighboring solutions of Equation (1) converge in
time to the attractor solution. Nonequilibrium systems generally
obey dissipative dynamics, the word dissipative meaning - that
many independent trajectories of the system with different initial
conditions eventually converge on a certain limit set, the attractor.
The simplest attractor type is a stable fixed point, that is, a constant
solution of Equation (1) to which all neighboring trajectories con-
verge. Another important attractor type. in. biology is the limit cy-
cle, a stable periodic solution of Equation (1). Many more compli-
cated attractor types exist (see also Newell et al., this volume), and
their identification has proved significant in many branches of
science (see Campbell, 1987; Kelso, Mandell, & Shlesinger; L988)
and medicine (see Koslow, Mandell, & Shlesinger, 1987). Attractors
play a key role in the modeling process because the behavior of the
collective variable in time (the dynamics of the collective variable)
may be mapped onto attractors, the layout of which may be altered

_ as a control parameter is changed continuously.

For the hand experiments of Kelso and colleagues, Haken, Kelso,
and Bunz (1985) were able to determine the dynamics of relative
phase, ¢, from a few basic postulates. First, the observed stationary
states of ¢ at 0° and +180° are modeled as point attractors. This is a
minimality strategy in which only the observed attractor type ap-
pears in the model. It canrot be overemphasized that these are point
attractors in the space of collective variables, that is, of the system's
relevant degrees of freedom. Second, the model must reproduce the
observed bifurcation; that is, two patterns are available below a
critical frequency, a condition called bistability, whereas only one
is stable above the critical point (monostability). Third; due to the
angular character of ¢, the dynamics have to be 2r’ periodic. An-
other way of saying this is that because ¢ occurs only under cosine
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or sine functions, the properties of the physical system must not
change when ¢ is replaced by ¢ + 2n. Fourth, both hands are assumed
to play a symmetric role; that is, the behavior of the system does not
depend on the way we label the right hand and the left hand. This
means that the model is symmetric under the transformation ¢ to
-¢0. This assumption fits the data well; evidence for hand preferences
in the bimanual experiments is weak at best.

In synergetics, the equations for order parameters are often of the
form '

. v
¢=~£ 2)

where V is the so-called potential function. Following this strategy,
the simplest and most general model obeying the four postulates is a
potential, V, that is a superposition of two cosine functions:

V=-a cosd) - b cos(2¢) : (3)

which is an explicit model of the dynamics of relative phase with
two parameters, a and b.

The behavior of the system described by Equations (2) and (3) can be
readily visualized if ¢ is identified with the coordinate of a particle
that moves in an overdamped fashion in the potential, V. When the
total superposition (Equation 3) is taken and the ratio b/a is
changed, a whole series of potential fields can be traversed (see
Schéner, Haken, & Kelso, 1986, for how the parameters a and b are
calculated from real data). Now prepare the system, as in the state
shown by the black ballin Figure 1.2 (¢ = +n). Decrease the ratio b/a,
which corresponds to increasing the experimental frequency. At a
critical value of the parameters, the black ball falls to the lower
minimum at ¢ = 0. This corresponds to the transition from the anti-
phase (antisymmetric: ¢ = +n) state to the in-phase (symmetric:
¢ = 0) state. When frequency is further increased (b/a tends to 0}, the
hand movements remain in the symmetric pattern. Note also that if
the system is prepared in the symmetric pattern and b/a is de-
creased, no transition to ¢ = zx occurs. Also, following a transition
to ¢ =0, if b/ais increased again ( corresponding to a decrease in ex-
perimental frequency), the system remains in that state. This hys-
teresis phenomenon is well known in many physical and biological
systems and was also a feature of the hand experiments.




The Dynamic Pattern Approach 13

1.0002b/a IV 0.875
JAWEIRVA

fre s

;
-9

by 0.625

V
R \1/ rc-"p

0.250 v 0.125

el W
~_

e TN

-n:\}/ rt“p-n\l/ o

Figure 1.2. The potential (3) as the ratio b/a is changed (numbers refer to
b/d). The system is initially prepared anti-phase {(b/a = 1.0). As b/a de-
creases, the little ball illustrates the system's transition to in-phase (b/a =
0.0) cycling behavior. Note: from "A Theoretical Model of Phase Transitions
in Human Hand Movements" by H. Haken, J. A. S. Kelso, and H. Bunz, 1985,
Biological Cybernetics, 39, p. 150. Copyright 1985 by Springer-Verlag.
Reprinted by permission.

Q. Your theoretical strategy enables you to provide a compact de-
scription of the hand experiment results, but how do you really
know that stability and change of biological movement patterns
correspond to nonequilibrium phase transitions?

A. The answer is that we don't know in advance and that we have to
find out. Certainly, not all changes correspond to phase transitions.
For example, as frequency was increased in the bimanual experi-
ments, there was often a parallel, smooth decrease in movement
amplitude in both fingers (see Kay, Kelso, Saltzman, & Schoner,
1987). However, such changes are best viewed as parametric. On the
other hand (pardon the pun), in systems close to transition points,
certain specific phenomena are predicted to occur jointly. One of
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1ese predictions involves fluctuations around the mean state of the
dllective variable. These fluctuations arise from the dymamics of
umerous subsystems to which the system is coupled. The collective
fect ‘of these underlying processes acts as a perturbation in the
rm of noise. As the system approaches a critical point, one may
Jserve an accompanying increase in these fluctuations—so-called
thancement of fluctuations—reflecting the growing inability of
1e system to maintain a particular pattern. In the critical region
self, the system briefly displays transient behavior, in which no
:finitive pattern is apparent. The system then evolves to a new or
fferent pattern, apparent from the new value of the collective
riable. The switch to a new pattern is accompanied by a marked
:crease in fluctuations, signifying that the transition to a new sta-
dnary state is complete (cf. Prologue).

: values of the control parameter where fluctuations are minimal,
«€ pattern is considered to be more stable than in control parame-
r regimes -where higher fluctuations are observed. Stability,
erefore, is not just an intuitive descriptive label; rather, it is a
ell-defined concept that is central to dynamic pattern theory (for
rther discussion see Kelso et al., 1987; Schéner & Kelso, 1988a).
:ability serves a.dual purpose in linking theory and experiment:
>t only does it characterize the states in which the systermn resides, -
1t also. loss of stability in the order parameter is hypothesized to
: the chief mechanism that effects a change of pattern. More ex-
icitly, fluctuations may be considered stochastic forces, acting as
mtinuously applied perturbations that drive the system away
xm its present state. In the bimanual experiments, these fluctua-
ms were measured as the standard deviation of the collective

riable, relative phase. In other nonequilibrium systems, other
servables such as the output of laser light or the molecular con-
ntration in chemical reactions undergo large fluctuations (see
aken, 1983, for many examples).

2lso and Scholz (1985; see also Kelso, Scholz, & Schéner, 1986) an-
vzed the mean relative phase and its standard deviation in each of
e two coordinative patterns as frequency (a control parameter)
1s increased. When the motions were prepared initially in the
mmetric pattern, the mean relative phase and standard deviation
mained relatively constant. However, clear enhancement of fluc-
ations both before and during the transition were observed when
¢ movements were prepared anti-phase. Furthermore, after the
idtch: from the anti-phase to the in-phase pattern, fluctuations de-
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creased dramatically to levels comparable to the symmetric, in-
phase condition. In Figure 1.2, it is quite easy to see what enhance-
ment of fluctuations means. Any small fluctuation, when the
attractors are well defined (top left), will be quickly damped; that is,
the effect of fluctuations in this parameter regime is small. How-
ever, the same fluctuations, when parameters flatten the minimum
at ¢ = 7, will be seen to be greatly amplified.

A second prediction of dynamic pattern theory and synergetics in
general that further characterizes the differential stability of the
attractors at different values of a control parameter concerns criti-
cal slowing down. Simply stated, when a system is close to a transi-
tion point, the system reacts more slowly to external perturbations
than it does when it is far removed from the critical point. If a small
perturbation is applied to the system, driving it away from its sta-
tionary state, the time it takes for the system to return to that state,
the local relaxation time (tre]), is a measure of the stability of the
attractor. The smaller 1re], the more stable the attractor. Obviously,
as the phase transition regime is approached, enhanced fluc-
tuations should be reflected in a parallel increase in the duration of
Tre] (actually, they grow as a square root function of the relaxation
times: cf. Scholz, Kelso, & Schoner, 1987; Schoner et al., 1986). As
well, once the critical point is crossed, the sharp decrease in
fluctuations that follows the emergence of a new pattern should be
accompanied by a decrease in local relaxation time. In terms of the
potential of Figure 1.2, critical slowing down is reflected in a flat-
tening of the pretransition mimimum (as b/a is decreased and the
transition regime is approached). Thus, when the little ball is
pushed away from the minimum by a perturbation, it takes longer
to return to the minimum in this flattened state than it does when
the shape of the potential is steeper (i.e., at lower values of the con-
trol parameter where restoring forces are large, or after the transi-
tion is complete and the system resides in a new, well-articulated
basin of attraction. The attractor basin is defined as the set of all
initial points from which trajectories converge to a given attractor.)
At even higher values of the control parameter, the initial mini-
mum disappears altogether, and the little ball falls to the sole re-
maining basin of attraction. :

The critical slowing down prediction of synergetics was tested in the.
bimanual paradigm (Scholz & Kelso, in press-b; Scholz et al., 1987).
A torque pulse (50 ms duration) perturbed one of the index fingers as
they moved at different frequencies. This pulse acted as a perturba-
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tion that moved the bimanual pattern temporarily away from its
prepared state and enabled calculation of the time to return to the
initially prepared pattern. The results were extremely consistent
with predictions: (a) Except for the lowest frequencies, the relax-
ation time in the anti-phase mode was consistently higher than in
the in-phase mode; and (b) as the system approached the transition,
the relaxation time increased in the anti-phase mode but remained
constant or decreased in the in-phase mode. Thus, through the use
of an entirely different experimental observable, support for a
nonequilibrium phase transition in biological coordination was
provided. In sum, observations of critical slowing down and en-
hancement of fluctuations are typical features of self-organization
in synergetic systems. New states evolve without specific influence
from the outside; that is, the control parameter does not anticipate
or indicate the new state but rather creates the necessary conditions
for the system to acquire it.

When collective variables for patterns are identified, relaxation
times and fluctuation measures are well defined and open to obser-
vation. As we have noted, the key step is to link such measures to
the concept of stability. Time scales play a crucial role in this re-
gard, that is, in the interpretation of observed patterns as attractor
states of a dynamical system. Up to now, we have introduced local
relaxation time, Tre], as a measure of the time it takes the system to
relax to an attractor once it is nearby. But two other time scales in
addition to 1tre] are important: (a) observation time (tobs), the typi-
cal time scale on which the experimenter observes the system in a
given preparation and over which statistical averages are per-
formed; and (b) equilibration time (tequ), the time it takes the sys-
tem to reach a stationary probability distribution, or stationary
state, from a typical initial distribution. In the bimanual case, Tequ
is the time it takes the system to travel from one basin of attraction,
for example, at ¢ = +x, to the other basin of attraction at ¢ =0. In or-
der to interpret observed states as (local) attractor states, the
following time scales relation must be fulfilled:

Trel « Tobs « Tequ (4)

Here, the time it takes the system to relax back to its stationary
state is shorter than the time over which the system is observed
(e.g., for a given value of the control parameter) and far less than the
time necessary to reach its most stable state. In terms of Figure 1.2,
-this relation means that the rolling ball may be pushed away from
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its present minimum, but the push. is not enough-to force-it over:the
potential hill. That is, the system relaxes-to its: (local)- stationary.
state.on the observed time scale. However, as a state loses.stability;
its local relaxation time increases until, at the  phase- transition;
the tiine scales relation (4) is violated, and smtchmgi%occurs»;afrhe
nature of the transition (e.g., whether critical fluetnations.will: be
observed) depends on another time scale,  the -time. ;scale-of
parameter change, Tpar- This time scale reflects the-fact:that;in
biological systems, the control parameter that brings about the
instability is itself changing in time. For example, if Rt

Trel ¢ Tpar “ Tequ : C '~(5)

then the system remains at a control parameter value much longer
than the time taken to return to its present state after being per-
turbed, allowing the system to relax to a locally stable state. In such
cases, typical features of critical phenomena (enhancement of fluc-
tuations and critical slowing down) are predicted. Thus, in our ex-
perimental system, if time scales relation (5) holds; it is possible to
maintain a particular pattern even as fluctuations increase, and a’
transition is observed only as the old state becomes unstable. If,
however, : »

Trel ¢ Tequ * Tpar e

meaning that the control parameter is fixed at a value that' is guite
long relative to the time it takes the system to find-a'global state"of
stability, we may see no enhancement of fluctuations-becaiise- the
system seeks out the lowest potential minimum before the-old'state
actually becomes unstable. One can readily see the general'implica-
tions of these time scale relations for the design of experiments: In
the bimanual work, because Tpar and Tobs are of the samie order in
the experiment, we expect time scales relation (5) to hold up'to the
transition. This requires us to differentiate two parameter regimes:
the noncritical regime in which the system is stationary in ‘the
sense of relation (5), and the critical regime in which the system ex-
_ hibits transient behavior. In these regimes, the full stochastic dy-
namics of Equation (3) can be solved numerically (Schoner et al,
1986) with pretransitional information about the ‘standard. devia-
tion of relative phase and relaxation time of the anti-phase‘inode.
The stochastic model accounts very well for the transient ‘behavior
without adjusting any parameters. Moreover, we should emphasize
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that all time scales are measurable. In the case of Tohs and Tpar,
measurement is often quite obvious; for Tequ, Several measurement
techniques exist. One direct measure is called mean first passage
time, which is the average length of time before the system first
changes state. In the bimanual experiments, mean first passage
time was determined directly using experimental data (Scholz et al.,
1987), enabling a direct test of relation (5) and its breakdown at the
phase transition. Switching indeed ocurred as the time scale rela-
tion was violated. Thus, time scale relations that govern the
switching dynamics among collective states are directly observable
and become even more important when other essentially biological

features such as learning (Schoéner & Kelso, 1988f) and development

(Thelen, Kelso, & Fogel, 1987) are considered.

The stochastic version of Equation (3) (Schéner et al., 1986)
contains another novel feature that pins down the nonequilibrium
phase transition interpretation of stability and change in patterns
of coordination. This feature is the duration of the transient from
the anti-phase state to the in-phase state—which we call switching
time. Due to the stochastic aspect of the dynamic model, switching
does not occur as soon as the critical frequency is reached. Instead,
during the transition, the probability density of relative phase, ini-
tially concentrated at ¢ = £180°, flows to ¢ = 0° and accumulates
there until the "new" peak at ¢ = 0° is dominant and stationary. The
model predicts the duration of this process in terms of both its
mean and distribution. Consistent with our operational approach,
switching times were also extracted from experimental data (Scholz
& Kelso, in press-b; Scholz et al., 1987). In most cases, they were easy
to calculate as the time between the relative phase value immedi-
ately before the transition and the value assumed immediately fol-
lowing the transition. The striking agreement between theoretical
prediction (Schomner et al., 1986) and empirical data is particularly
interesting because it shows that the switching process itself is
quite closely captured by the stochastic dynamics of Equation (3)
with noise added. The language of phase transitions is thus ade-
quate for understanding the present phenomenon and opens the
way to explore others (see Kelso & Schéner, 1987, for further exam-
ples).

Q. Are there other ways to identify attractors of the collective vari-
able dynamics?
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A. A technique that has proven useful in our experimental data:is. a-
sampling technique known as a return map. Here we use the
information provided by relative phase values (point estimate) to
determine whether a relation exists between one relative phase
value (¢n) and the next (on+1)- Essentially, this method tests for a
deterministic structure in the dynamics by grouping discrete
relative phase values into pairs (0n, dn+1) and plotting each as-a
point over time. If the relative phase values are 2n-periodic, then
each pair plots the same point, a pattern suggesting the presence of-a
point attractor in this particular state space. Similarly, a limit
cycle would appear as the same points revisited in a particular
order. At the opposite extreme, a purely random process would
appear as a scatter of points reflecting the lack of any history in the
succession of values (see, e.g., Shaw, 1984). .

Before giving an example, however, we emphasize that discreteness
may be imposed in a number of ways. If we consider a 3-D trajectory
in the space of (x, X, t), we may sample; or "strobe," the trajectory at a
specified time within each cycle of its path. Essentially, this
sampling defines a plane perpendicular to the (x, i) plane. Each time
the trajectory passes through this plane, a point is plotted (¢n, dn+l)s
the successive values of which enable us to construct a return map.
In our example, which uses peak-to-peak relative phase, time itself
is not the sampling variable. By choosing the peak displacement of
each cycle, we define a sampling surface perpendicular to-the (x, 9
space whose shape is a deformed plane. In other words, the point at
which we sample will vary with changes in peak displacement
values. Otherwise, if the peak displacement value is exactly the
same in each cycle, then the sampling plane is uniform. Notice also
that if the oscillatory components are perfect sinusoids, then peak
values define uniform perpendicular planes in both the (x, ¥ and (X,
#) space because peaks define constant time and displacement
values.

Shaw (1981) draws attention to three factors on which the success of
this method depends. First, the important attractor properties-are
topological; that is, almost any set of coordinates that can be
manufactured will suffice to describe the attractor. Second, the sys-
tem is nearly deterministic for short times; that is, thé point-to-
point structure of the attractor is well defined. Third, the*dimen-
sionality of the attractor is in fact small enough to be tractable (see
Kay, Saltzman, & Kelso, 1988, for application of dimensionality
calculations to motor behavior; also Kay, in press).
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Figure 1.3 is a series of relative phase return maps for the cycling
behavior of the right arm and right leg of a human seated in an ex-
perimental apparatus that allows all four human limbs to cycle up
and down in the sagittal plane (Jeka & Kelso, 1988; Kelso & Jeka, in
preparation). By convention, relative phase values close to 180°
correspond to the arm moving up as the leg moves down; relative
phase values around 0° correspond to both limbs moving up and
down in the same direction. Cycling frequency was scaled as in pre-
vious bimanual experiments. Relative phase values for cycle n are
plotted on the horizontal axis versus relative phase for cycle n+1 on
the vertical axis. Each of the four maps represents two of eight suc-
cessive frequency plateaus (from 1.25 to 3.00 Hz in steps of 0.25 Hz).
The first two frequency plateaus appear in the upper left map, with
following plateaus graphed in a clockwise direction. In each map,
the phase values of the first plateau pair are plotted with the white
squares, and the second plateau appears as black triangles.

The convention we have adopted to plot phase values in these maps
is that points appearing in any of the four corners of this coordinate
plane denote approximately equivalent states that vary around O°
{or 360°). They differ only in that when the arm reaches its peak
displacement slightly ahead of the leg, the relative phase values are
slightly less than 360°, whereas if the arm is slightly behind the leg,
relative phase values are slightly greater than 0°. Points lying on
either end of an imaginary 45° line from the origin are the special
case in which ¢pn = ¢pn41, that is, when the lead-lag relationship re-
mains the same in successive cycles. Points at either end of the op-
posing diagonal occur when the lead-lag relationship between limbs
changes in successive cycles. All points clustered around an anti-
phase (180°) value, however, will appear grouped around the center
of the coordinate plane.

Beginning with the upper left map, one sees a cluster of points
grouped around a 180° anti-phase relationship, corresponding to
the initially prepared pattern. The arrows reflect the fact that signs
of instability are already emerging by the second frequency plateau,
as relative phase briefly wanders toward an in-phase pattern, be-
fore returning to an anti-phase relationship, by the end of the
plateau. The next map shows even more transient behavior, as
points travel in a clockwise direction toward the origin and then
around three corner points corresponding to an in-phase pattern
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Figure 1.3. Return maps: the relative phase of cycle n (abscissa) versus cycle
n+1 (ordinate). Each map contains two successive frequency plateaus be-
ginning clockwise from top left. Arrows depict the change between succes-
sive relative phase values. White arrows show the initial change from a
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with changing lead-lag relationships between the limbs. The map in
the bottom right corner indicates that the transition is now com-
plete, as points remain clustered close to 360° (in-phase) for two




2y

TN e

22

John J. Jeka and J. A. S. Kelso 4

complete plateaus as well as the first plateau of the last map (bottom Sel
left). The final map also demonstrates the transition created by the A Hol
limbs operating at different frequencies, a transition that occurs tho
when the leg can no longer follow the required frequency as set by a fear
metronome. One now observes relative phase values jumping from cor
one side of the 45° line to the other, possibly suggesting a bifurca- me:
tion to limit cycle behavior in which phase values visit a number of sig
repetitive values (states) in a specific order. We must emphasize, 4
however, that this pattern does not prove the existence of an attrac- To
tor but merely suggests that some underlying deterministic process rec
may be driving the interaction between the limbs. Such a suggestion bas
is legitimate only if it is supported with many more samples and a strc
quantititative analysis (Kelso & Jeka, in preparation). me;
apr
The important point illustrated by the return map, which has been for

discussed previously, is that a system with numerous components aro
may be represented by a small number of parameters. We are essen- sus
tially mapping a higher dimensional space (minimally, the posi- spo
tion and velocity of each limb with possible coupling degrees of str¢
freedom) onto a low-dimensional map from which one can observe spe
transitions in the collective variable, relative phase, and the emer- wit]
gence of new, stable phasing relationships. Such maps allow one to
explore generalities that may apply to many systems that would The
otherwise be difficult to compare. For example, the well-known lo- dep
gistic map (e.g., May, 1976), f(xn+1) = Ax_(1 - x), possesses a single thy
parameter, A, which has certain univérsal properties—known as rou
Feigenbaum constants (Feigenbaum, 1983)—that have been tior:
quantitatively measured in a number of experimental systems. slog
Such one-dimensional maps are capable of modeling the Test
complexity of behavior typically seen in high-dimensional systems valt
and illustrate again how important it is to identify the relevant de- rela
grees of freedom in complex systems. dur
ups
We must stress that graphical characterizations indicative of bio- shif
logical attractors are not without historical precedent, even though inte
the signilicance of such characterizations may not have been real- poir
ized when they were first introduced. For example, Erich von Holst rela
(1839/1973), whose work on the oscillatory rhythms of fish fins stat
was one of the earliest efforts to characterize stability in a biologi- clos
cal system, formulated an empirical technique known as the time poir
and speed tables. Researchers have used this technique more re- 4 cycl
cently to characterize cardiac rhythms in cats (Reid, 1969) and cel- i an 1

lular bursting rhythms in the nervous systems of lobsters (Ayers &
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Selverston, 1979; see also Stein, 1976). Two rhythms from von
Holst's own work are shown in the top half of Figure 1.4. Even
though both signals show periodicity, there are also nonuniform
features to the lower signal. The question is whether these changes
connote an influence between the two rhythms or whether they are
merely "noisy" fluctuations in otherwise unrelated physiological
signals.

To distinguish such possibilities, von Holst (1939/1973) first
recorded the "relative phase" of the two rhythms on a cycle-to-cycle
basis. He then measured the half-cycle duration for both the up-
stroke (fin movements to the right) and the downstroke (fin move-
ments to the left) of each cycle. The result of these measurements
appears in the bottom half of Figure 1.4, which shows the time table
for the rhythms directly above it, now with cycle time normalized
around a mean value. Relative phase is plotted on the abscissa ver-
sus the individual cycle time on the ordinate. The x curve corre-
sponds to upstroke cycle times, and the o curve represents down-
stroke cycle times. We show only the time table here because the
speed table is conceptually identical but uses average velocity
within a half cycle instead of the half-cycle duration.

The time tablé reveals that the duration of a particular half cycle is
dependent upon the momentary phase relationship between the two
rhythms. This interaction is revealed by the behavior of points sur-
rounding the intersection of the horizontal mean half-cycle dura-
tion line and the x curve, where the x curve has a maximum negative
slope. Any point one chooses just below the line on the x curve rep-
resents a half-cycle duration that is slightly shorter than its mean
value. As a consequence, the next half-cycle is brought closer to a
relative phase relationship with the uniform rhythm, resulting in a
duration that is now greater than the mean value. Again, the next
upstroke is shifted further away from the vertical midline, this
shift resulting in a smaller half-cycle duration, and so on. Thus, the
intersection of the x curve and the mean value line is an "attractive”
point in the sense that all combinations of cycle duration and
relative phase tend toward this point (in the present language, it is a
stable fixed point). The strength of that influence depends on how
close the x point lies to the attractive point. A similar look at the
point at which the x curve's slope is increasing through the mean
cycle duration line reveals that it repels all nearby values (ie., it is
an unstable fixed point). It is noteworthy that the exact values of
these intersection points correspond to entrained states in which
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igure 1.4. Time table for the rhythms recorded from the left pectoral and
lorsal fin movements of Labrus. For each cycle, the relative phase of the
wo rhythms appears on the abscissa versus the percentage deviation from
he mean value (at 0) of the half-cycle duration on the ordinate. The x curve
lepicts fin movements to the right; the o curve, fin movements to the left.
Vote: from "Relative Coordination as a Phenomenon and as a Method of
wnalysis of Central Nervous Function” by E. von Holst,1973, in R. Martin (Ed.
nd Trans.), The Collected Papers of Erich von Holst: Vol. 1. The Behavioral
’hysiology of. Animals and Man (p. 59), Coral Gables, FL: University of

Tiami Press. Copyright 1973 by the University of Miami Press. Adapted by
ermission. ~

ycle duration and phase are locked. It is only when one moves
way from these points that the nature of their influence emerges.
‘he same analysis holds for the o curve, corresponding to
ownstroke cycles.

Ithough von Holst (1939/1973) was most interested in
haracterizing the coordination of irregular rhythms compared to
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the extreme cases of entrained and random patterns, he actually
provided a technique that characterizes stability in a qualitative
yet precise fashion. In essence, he graphically identified fixed-point
attractors; one that is stable and attracts all neighboring states and
one that is unstable, on which the system remains only if it sits
precisely upon this point (note again in the space of an adequate
collective, temporal variable). Any slight deviation from the unsta-
ble fixed point leads to further divergence. To better visualize the
existence of two such fixed points within the same system, consider
the case of a freely swinging pendulum (Abraham & Shaw, 1982).
The stable fixed point corresponds to the bottom of its circular arc
(i.e., 6 o'clock) because no matter where the pendulum begins its
swing, the combination of frictional and gravitational forces en-
sures its final position at this fixed point. Theoretically, however,
there is one exception to this case, in which these same forces are
perfectly balanced so that the pendulum remains perched at the
very top of its swing (i.e., 12 o'clock). Intuitively, it is easy to see why
this point is unstable: Even the slightest puff of wind will perturb
the pendulum away from this fixed point toward its more stable
partner. It is interesting to note that a simple, damped pendulum
forced by a cosine function exhibits chaotic behavior; that is, a
small uncertainty in the initial state rapidly makes it impossible to
forecast future states (for a review, see Grebogi, Ott, & Yorke, 1987).
Thus, even in seemingly simple systems, crisscrossing the border
between stable and unstable regions of state space may result in
enormous behavioral complexity.

Q. In this picture, once you have identified the patterns and their
dynamical laws, how do you derive these laws? I'm asking how dif-
ferent levels of description may be related.

A. A key feature of the discussion thus far has been to characterize
coordinated patterns in terms of the dynamics of macroscopic col-
lective variables. But the strategy allows one to address the subsys-
tems themselves and how these are coupled to produce coordinated
patterns. This feature distinguishes the present operational ap-
proach from others in the human motor control literature. Yet it is
entirely consistent with typical scientific procedure, namely, find
the macroscopic laws first and then derive them from a more mi-
croscopic level of description. In this regard, we cannot help noting
that the words macro and micro are always used in a relative sense,
as is the case in science generally. For instance, the relevant micro
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levels of the particle physicist, the condensed matter physicist, the
chemist, the biologist and so forth are all very different.

In our experimental model system, the individual oscillatory com-
ponents are the next level down from the patterns they produce
when they are coordinated. One may define the dynamics of indi-
vidual components using each limb's position (x) and velocity (4 as
collective variables, but collective now in terms of the next lower
level of description (e.g., agonist-antagonist muscle combinations).
The stable and reproducible oscillatory behavior of each hand is
modeled as an attractor in the phase plane (x, X), in this case, a limit
cycle. This step again is based on an accurate description of the
experimental data. In a study related to the bimanual finger work
(Ray et al.,1987), the cycling movements of individual hands were
observed. Subjects rotated their hands about the wrist at six
metronome-paced frequencies from 1 to 6 Hz in 1-Hz steps.
Although subjects were given no explicit instructions about
movement amplitude, the results demonstrated that amplitude re-
mained roughly the same within a given frequency but decreased as
frequency increased. It was found that with certain minimal as-
sumptions, a nonlinear oscillator model captured these experimen-
tal features successfully. In mapping the observed oscillatory state
onto a limit cycle, the notion of stability is once again a key feature
of the theory. This can be checked by measuring the relaxation time
of the individual components in a way similar to that described
earlier. Along with the observed kinematic relations, relaxation

time measures allowed us to determine all the individual oscillator

parameters. ‘A further assumption, that the oscillation is au-
tonomous and not explicitly time-dependent, was tested in the per-
‘turbation paradigm using phase-resetting techniques {see Kay et al.,
1988). The dimensionality of the attractor (Grassberger & Procac-
cia, 1983) was also calculated and corresponded to a limit cycle at-
tractor with noise (D ~ 1.2; see Kay et al., 1988).

How can the components with their dynamics give rise to the phase-
locked coordinative modes? Obviously, their dynamics have to be
coupled. Haken et al. (1985) have determined coupling structures
that can account for the observed phase-lockings. The simplest
model that achieves this is a van-der-Pol-like coupling of the form:

5&1 + f(xl, "‘1) = (xl -x) 1A+ B(xl - x2)2] (7)
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Xy + g, %) = Uo,-3) [A + Bly,-x)?] - ®

where fis the aforementioned oscillator function and A and B are
coupling constants. The experimental observation that the kine-
matic relations (e.g., amplitude-frequency relation) are not signifi-
cantly different between the coordinative modes and the single
hand movements shows that the coupling constants A, B are small
compared to the corresponding coefficients of the oscillator func-
tion (see Haken et al., 1985; Kay et al., 1987). In spite of this, the cou-
pling structure described by Equations (7) and (8) gives rise.to the
two phase-locked states. Indeed, Haken et al. (1985) were able to
derive the equation for relative phase (3) from Equations (7) and (8)
using the slowly varying amplitude and rotating wave approxima-
tions. These results not only provide further support for the
dynamical model on the collective variable level but also rigorously
establish the relation of the two levels of description. It is im-
portant to note that the coupling functions are quite unspecific to
the emergent patterns of coordination because several functional
forms may result in the same pattern of phase-locking (Haken et al.,
1985). Furthermore, coordinative changes may also emerge in dif-
ferent ways. For example, Kelso and Scholz (1985) showed computer
simulations in which the phase transition was effected by various
combinations of coupling strength and noise level. Also, simply
keeping the coupling function constant and changing only the
eigenfrequencies of the component oscillators bring about changes
in coordinative pattern. Thus, the collective properties of the sys-
tem are attributable more to the coordinated system as a whole than
to the actual coupling terms. This fact denotes a consistency across
the physiological and mathematical domains; in both, different
mechanisms may give rise to the same pattern (Kelso & Scholz,
1985; Schéner & Kelso, 1988a).

Q. It might be helpful now if you would summarize the main features
of dynamic pattern theory.

A. This theory (Kelso & Schéner, 1987, 1988; Schéner & Kelso,
1988a, 1988b, 1988c, 1988d) builds upon the concepts of synergetics
(Haken, 1975, 1983), a theory of self-organization and pattern for-
mation in nonequilibrium systems. Synergetics provides a theoret-
ical but operational language. The main idea is to view patterns of
coordination, or more generally, behavioral patterns, at one's cho-
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sen level of observation in terms of their nonlinear dynamics. We
can summarize the theory as follows:

1. Patterns of coordination at a given level of description are char-
acterized by low dimensional collective variables or order parame-
ters whose dynamics are function-specific.

2. Observable (i.e., reproducible, stationary over a certain time

scale) patterns of coordination are mapped onto attractors of the
order parameter dynamics.

3. Biological boundary conditions (e.g., environmental, task, and
energetic constraints) act as parameters on the collective dynamics
in the sense that they can modify the behavioral patterns but are
themselves not dependent on these patterns. A parameter that
moves the system through different collective states is a control pa-
rameter in the sense of synergetics. These parameters may be quite
unspecific to the resulting behavioral patterns.

4. Fluctuations determine not only the stability of the observed pat-
tern but also different time scales (global and local relaxation
times). Time scale relations govern the switching dynamics among
multiple coordinative patterns and account for observed multista-
bility, that is, coexistence of several patterns under the same condi-
tions.

5. Loss of stability leads to switching of pattern, and switching is
governed by stochastic order parameter dynamics.

6. If coordinative patterns are thus characterized at different levels
of description, these levels may be related. without introducing
additional concepts.

Points 1 to 3 provide a framework through which a dynamic pattern
description may be obtained. These steps must be taken for any par-
ticular experimental system at any level of description in order to
give the concepts a concrete meaning. Once a consistent description
in the sense of Points 1 to 3 is reached, Points 4 and 5 enable one to
test crucial predictions of the theory. It is important to emphasize
that the linkage among levels of observation (Point 6) is possible
only if a dynamic pattern analysis is available on both levels in
question.




Q. Now that you've provided the building blocks, as it were, of yo
approach, what further extensions are possible?

A. Although dynamic pattern theory was originally formulated :
the context of patterns of movement coordination, other behavior
patterns, functions, and experimental systems (a few examples fc
low) are open to analysis. There are really two cornerstones to tl
whole approach that make these extensions possible. The first
the necessity of identifying, in any given problem, the order parar
eter dynamics in the absence of any specific parametric influenc
We refer to these dynamics as intrinsic dynamics, which simp
means that the patterns arise as a result of nonspecific changes
control parameters (see Point 3). Nothing about "hard wiring"
these intrinsic dynamics is implied. However, the main point
that one has to discover the intrinsic dynamics to know what
modifiable, by the environment, by intentions, or by learning, 1
example. Once one knows the patterns and their dynamics, one
begin to talk rigorously of what it is that is changed (or inde
changeable) by specific parametric influences.

The specific parametric effects due to environmental requiremen
intentional or purposeful needs, tasks to be learned, and so for
allow us to introduce the second, not yet discussed, cornerstone
the theory, namely, the concept of behavioral information. Su
information may be expressed in the form of required behavio
patterns, that is; as part of the dynamics that attracts a behavio
pattern (defined by the intrinsic dynamics) toward the requi
pattern (Schoner & Kelso, 1988h). In this explicit sense, inforr.
tion is meaningful and specific to the biological system only to
extent that it contributes to the order parameter dynamics attrc
ing the system to the required (e.g., perceived, learned, memoriz
intended) behavioral pattern. An important consequence of t
definition is that information is defined in the same space as
collective variables that characterize the pattern. In fact, this or
ational definition of information has no meaning whatsoever o
side its influence on a set of collective variables and their (intrin
dynamics. The crux of this formulation is that information is
arbitrary with respect to the dynamics it modifies.

This statement is not merely a claim or a philosophical comr
ment (Kelso, Holt, Kugler, & Turvey, 1980; Rugler, Kelso, & Tumn
1980: 1982) but rather can be shown to work (in the sense of an
plicit mapping between experiment and theory) in a numbel
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cases, including the formulation of perception-action patterns
{Kelso, Delcolle, & Schoéner, in press), the modification of action
patterns by the environment (experiments by Tuller & Kelso, 1985,
in press; see Schoner & Kelso, 1988c, 1988d for theory), and learned
and memorized behavioral patterns (Yamanishi, Kawato, & Suzuki,
1980; Schoéner & Kelso, 1988b, 1988c, 1988d). Many other experi-
mental systems are open to a similar theoretical analysis: locomo-
tory gait patterns and gait changes (Schoner, Jiang, & Kelso, 1988),
the coordination of rhythmic movement between two human sub-
jects (Schmidt, Carello, & Turvey, 1989), the mode-lockings studied
by Kelso and DeGuzman (1988), and interlimb coordination of dis-
crete movements (Kelso, Southard, & Goodman, 1979).

Let us fix the concept of behavioral information in a particular
context that we have not discussed so far, namely, the ability of bi-
ological systems to change patterns of behavior flexibly in a pur-
poseful or intentional fashion. Our previous empirical and theoret-
ical work on spontaneous switching of coordination patterns leads
to two general predictions. First, the intrinsic dynamics should in-
fluence the process of intentional change among available behav-
ioral patterns. That is, the time it takes to switch from one pattern
to the other depends on the stability of the patterns themselves. For
example, if it is true that the anti-phase coordination pattern is less
stable than the in-phase pattern, the system should switch faster in
that direction than vice versa. The second prediction is that an in-
tention, defined now as an intended behavioral pattern (and thus
included as part of the behavioral dynamics) can change the dy-
namical chacteristics, such as the stability, of the behavioral pat-
terns. Thus, intentional information can be viewed as a perturba-
tion of the intrinsic dynamics, attracting the system to the intended
behavioral pattern. Note that the conceptual distinction between
the intrinsic dynamics and the contribution of intention is mean-
ingful only if the intrinsic dynamics are identified by experiments
that do not involve intentional behavioral change. It is this essen-
tial feature of the approach that makes predictions about the pro-
cess of behavioral change possible in the first place.

An easy way to see the consequences of these predictions is through
the potential pictures shown in Figure 1.5. On the top left we show
the standard intrinsic dynamics (Equation 3) of Haken et al. (1985)
with two minima of the collective variable at ¢ = 0° and ¢ = 180°. On
the top right we show the potentials corresponding to an inten-
tional perturbation,
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Figure 1.5. Modification of the intrinsic dynamics by behavioral informa-
tion, in this case, an intended behavioral pattern. Upper left depicts the in-
trinsic dynamics according to the potential (3). Upper right shows the
potential (9) specifying the intentional perturbation. Lower graph is the
result of summating the top two to arrive at the full dynamics. The little ball
travels much faster along the steeper slope of =0 than along the slope of ¢
= 180, consistent with empirical switching time data of Kelso et al. (1988).

Vi () = - Cintent COS (6-w) ©
where the solid line represents an intentional pattern that is in-

phase (v = 0) and the dotted line an intentional pattern that is anti-
phase (y = m). A single parameter, Cintent, determines the strength of
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the intention to produce one pattern or the other. Note that in this
figure the intrinsic dynamics are absent, so the two patterns are
equally stable. :

The full dynamics, that is, V(¢) + V($)intent. is shown bottom center.
Now it is easy to visualize the consequences of the theory applied to
intentional behavior (see Schéner & Kelso, 1988d, 1988e, for de-
tails). First, it is obvious that an intention can change the intrinsic
dynamics; that is, it can destabilize one pattern and stabilize the
other. Second, because the attractor at ¢ = 0° is more stable than at ¢
= 180°, the system will run faster to the in-phase pattern than to the
anti-phase pattern. We have illustrated this situation with black
balls in Figure 1.5. A recent experiment nicely demonstrated the in-
fluence of the intrinsic dynamics on intentional switching (Kelso,
Scholz, & Schoner, 1988; Scholz & Kelso, in press-a). The task was-
initially to cycle the fingers either in-phase or anti-phase. Subjects
were paced for 10 cycles by a metronome, which was then turned off.
Instructions were to continue cycling at the initial frequency until
an auditory tone signaled a switch to the opposite mode of
coordination. The results, measured as mean switching time, show
that switching from in-phase to anti-phase is about twice as slow as
in the opposite direction, further evidence that the anti-phase mode
is intrinsically less stable than the in-phase state.

Two points, one methodological and the other theoretical, emerge

from these results. The first is that switching time, the tool em- .

ployed here, reveals dynamic constraints on intentional switching
that may be put to more general use. For instance, one may use the
method "backwards" to identify the relative stabilities of behav-
ioral patterns in those patterns for which it is difficult, if not im-
possible, to find phase transitions. The second point is that two
languages that are often considered irreconcilable, namely, the
language of intentionality and the language of dynamics, are actu-
ally captured in one unified picture. In the bimanual case, an inten-
tion acts in the same space of collective variables as that in which
the intrinsic patterns are measured. Intentional information de-
fines an attractor in that space and is meaningful to the extent that
it attracts the system towards an intended behavioral pattern. At
the same time, intentions are restricted by the intrinsic dynamics,
in that the ability to perform a particular pattern is influenced by
the relative stability of the available patterns. In short, intentions
parameterize the dynamics but are in turn constrained by the dy-
namics.
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Q. You have told me mostly about rhythmic movement of two com-
ponents. What about other systems, other levels of description?

A. Earlier, we mentioned that speech research may benefit from the

strategy we have formulated, particularly because this discipline

has been searching for its own relevant variables for some time.

The acoustic instantiation accompanying the production of a word

varies with many factors, including stress pattern, the rate at which

the word is produced, and the nature of the surrounding speech seg-

ments. However, this variation is not reflected in our perception of
a spoken word. We seem able to decipher the linguistic content of an
utterance despite the context-dependent nature of its production.

Previously it was thought that a one-to-one relationship might ex-
ist between the electromyographic activity of individual muscles
and the corresponding speech segments produced (Liberman,
Cooper, Shankweiler, & Studdert-Kennedy, 1967). However, such
activity was found to be highly context-dependent (MacNeilage &
DeClerk, 1969). This finding led researchers to study the articula-
tory gestures associated with the speech segments (Liberman et al,,
1967: Lindblom, 1963; Kozhevnikov & Chistovich, 1965) to
determine whether the robust nature of speech perception lies in the
articulatory movements themselves. These movements, however,
displayed the same lack of invariance found in electromyographic
activity. Presently, the conceptual basis for invariance is being
challenged because this invariance means no change in the face of
numerous metrical changes such as stress and speaking rate. But
the noisiness of biological systems makes it difficult to character-
ize invariance as anything more than a statistical effect (see also
Abbs & Connor, this volume).

Just as it has proven useful in the bimanual experiments, relative
timing may be conceptually better suited to understanding of the
speech system. This most recent tack (e.g., Kent & Netsell, 1971;
Lofqvist & Yoshioka, 1981) has shown that relationships between
articulators vary less across metric change than do absolute mea-
sures. This tack has also enabled investigators (Kelso, Saltzman, &
Tuller, 1986) to introduce stability as a means of characterizing
patterns in articulatory gestures. We stress, however, that this is not
merely an exchange of terms. The advantage that accompanies sta-
bility is that fluctuations are no longer seen as a confound but as es-
sential to characterizing the change from one pattern (phonemic
utterance) to another. :
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An example of this insight applied to dynamic pattern theory is a
study by Tuller and Kelso (in press), who investigated the relative
timing between peak glottal opening and minimum lip aperture in
two utterance conditions. Subjects were instructed to repetitively
produce either a consonant-vowel (/pi/) or a vowel-consonant (/ip/)
utterance to the beat of a visual metronome whose frequency was
scaled similarly to that in previous bimanual experiments in our
lab. The results displayed a consistent relative phase value for /pi/
across all frequencies. However, although /ip/ displayed a dis-
tinctly different value for relative phase than /pi/ did at lower fre-
quencies, a transition to the relative phase corresponding to /pi/
ensued at higher frequencies. Thus, we have empirical evidence that
the order parameter dynamics of relative phase is not unique to the
bimanual system, but is useful in characterizing pattern stability
and change in a completely different context. Furthermore, in a fol-
lowup experiment using tape recordings of the actual trials from the
production experiment, listeners were found to perceive the shifts
in relative phase as corresponding shifts from /ip/ to /pi/ precisely
at the point at which this transition occurred in the articulatory
data. This remarkable fit between the production measures and
perception of syllable form suggests that the relative phase dynam-
ics may provide a means for understanding the coupling between
speech production and perception. :

A further step may be taken to link dynamic pattern theory to a
completely different level of observation. Although the idea has not
been explicitly or systematically tested to date, examples in the
neurobiological literature have suggested that certain experimental
aspects of neuronal behavior may be realizable within a dynamic
pattern framework (Kelso et al., 1987; Schéner & Kelso, 1988a). In
fact, typical phenomena of temporal ordering are widespread in the
neuronal pattern generation literature, for example,
sychronization, frequency locking, and phase locking (Rand,
Cohen, & Holmes, 1988). These phenomena are typically depicted
through measures of relative phase and latency among components,
neuronal burst frequency, and frequency differences among
neurons (e.g., Croll, Davis, & Kovac, 1985). Such findings strongly
suggest that collective variables for temporal order at the neuronal
level can be defined. Furthermore, observation at this level has
uncovered numerous candidates for control parameters such as
serotonin, whose concentration changes the elicitation threshold
for rhythmic feeding patterns in Helisoma (see, e.g., Selverston &
Moulins, 1987) or electrical stimulation, which has proven to
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modify locomotory patterns in decerebrate cats (Shik, Severin, &
Orlovskii, 1966) and fleeing behavior in hens (von Holst & von
Saint Paul, 1973). Finally, we note that stability measures,
although not explicity formalized in the neurobiological literature,
are evident. For example, fluctuation measures (Wyman, 1965) have
been used in the analysis of flight patterns in the blowfly at the
individual neuronal level, although collective variables were not
identified and thus stability was not concretely ascertained.
Nevertheless, once collective variables for neuronal patterns have
been identified, the relaxation time and fluctuation measures are
well defined and can be calculated through perturbation techniques
and fluctuational analysis. These theoretical concepts and
empirical techniques are the key to understanding pattern stability
and change at the neuronal level. ‘

Q. Your discussion of pattern switching leads me to inquire about
pattern selection. How, in this picture, does one particular pattern
emerge from those available?

A. Processes of pattern formation and selection occur throughout
nature. Typical nonequilibrium systems will have many possible
configurations of pattern available, not all of which are stable. A
popular image is of multiple attractors with many basins of tempo-
rary attraction (Gleick, 1987). One of the challenges in nonlinear
science is to understand the dynamics of sequencing among multi-
ple patterns, namely, which patterns are explored and eventually
selected. Again, such questions are relevant at multiple scales of
observation and to multiple functions, from learning to the im-
mune system (see contributions in, e.g., Koslow et al., 1987). Here are
a few ways to think about pattern selection in the paradigm of non-
linear science. The list is far from inclusive, of course, and is re-
stricted to issues germane to this book on motor coordination.

1. In our example of intentional switching among behavioral pat-
terns, we saw that an "intention" can select a pattern, but which
pattern can be most easily selected is determined by the pattern's
stability. Selection, in other words, is influenced by the
(quantitatively measurable) relative stability of the patterns avail-
able to the system. Our focus has been to identify constraints on the
pattern selection rather than the dynamics of the selection process
itself. For example, other factors {(e.g., selection on the basis of cost
or other performance criteria) are not accounted for in the behav-
ioral dynamics. Such accounting would require degrees of freedom
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n addition to those included in the intrinsic dynamics (cf. Schéner
z Kelso, 1988e).

. In the language of dynamic pattern theory, boundary conditions
lay a parametric role in pattern selection. Such parametric influ-
nces can be unspecific or specific. Generally, in nonequilibrium
ystems, boundary conditions may cause the system to "pin" itself
> the most stable modal configuration (for examples see Campbell,
987; Haken, 1983). The shape of the environment, for example, in
ienard convection favors the formation of certain patterns; that is,
‘hether the enclosure is circular or rectangular will result in quite
ifferent patterns under the same values of the temperature gradi-
nt. Instabilities can be viewed as playing a role in pattern selection
1the sense that these instabilities seek out the most stable pattern.
luctuations are crucial because they probe the environment of the

dllective state, "selecting” (or leading to the emergence of] a new
attern.

. In a number of experimental situations, for example, the percep-
on-action patterns studied by Tuller and Kelso (in press) and the
lode-locking studies of Kelso and DeGuzman (1988), the pattern
1at emerges (or is selected) is a direct consequence of cooperative
ad competitive interactions between the intrinsic dynamics and
tternal influences. In the Tuller and Kelso data, for example, when
1 environmentally required relative phase coincides with one of
ie basic intrinsic patterns, ¢ = O or ¢ = n, the minimum of the po- .
ntial is exactly at the required relative phase, and its shape is well
ticulated (i.e., variation in ¢ is small). There is, in other words, a
operation between extrinsic (environmentally defined) and in-
insic dynamics. In contrast, if the environmentally required
lative phase does not correspond to one of the intrinsic patterns, a
mpetition ensues, pulling the minimum away from the required
lative phase (i.e., variation in ¢ is large). In short, the balance be-
-reen intrinsic and extrinsic dynarnics can be seen as a cooperative

‘competitive one. These processes thus determine (or select) which
ittern is observed.

3 a general point, nonlinear dynamical systems—even
terministic equations of motion—are enormously sensitive to
itial conditions and parameters in certain regions of parameter
race. Very complex behavior can emerge in systems governed by
nple rules (e.g., the logistic equation [see May, 1976] or the circle
ap[see, e.g., Kelso & DeGuzman, 1988]). Until we understand these
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systems better, we should probably resist ascribing a pi‘iori the pro-
cess of pattern selection to an agency residing inside the system.

CONCLUSION

We have presented, in a dialogue, some of the key features of the dy-
namic pattern strategy, which is aimed at understanding the coor-
dination of behavior, its stability and change. The language of
dynamic patterns stresses a close relation between theory and
experiment and is level-independent in the sense that the central
ideas and observables are applicable on several, potentially multi-
ple, levels of observation. Key concepts are the characterization of
behavioral patterns by collective variables, the determination of
the dynamics of these patterns, and the study of their stability (and
lack thereof). As Gould (1988) has recently remarked, "To know the
reasons for infrequent change, one must understand the ordinary
rules of stability” (p. 23). But the stability of what? The paradox,
from our perspective, is that to understand stability, one must un-
derstand how it is lost because, as we have shown, loss of stability is
central to behavioral change. :

Identifying collective variables (order parameters in the language of
synergetics) proves to be crucial to defining those aspects of behav-
sor that are modifiable. Information with meaning is expressed in
dynamic pattern language in terms of the same set of collective
variables by which the behavioral patterns are characterized. This
is a step toward the reduction, if not the elimination, of a tradi-
tional demarcation between mental (linguistic) and physical
(dynamical) modes of description (cf. Pattee, 1976). When such
information is included as part of the dynamics, the match between
mathematically formulated theoretical predictions and empirical
results is quite adequate.

The strategy of dynamic pattern theory offers a recipe, but the
scientist must provide his or her own ingredients. It still demands
insight and knowledge, particularly from the experimentalist, who
must know the system sufficiently well to define the parameters
that promote nonlinear behavior. It is a nontrivial step to find a
qualitative change of behavior and to identify the conditions under
which such change will emerge. Phase transitions are nevertheless
crucial to understanding the dynamics that underlie both stability
and change of coordinated behavior. They provide the physical
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foundation upon which to build a deeper und‘er,étanding of those es-
sential biological and psychological functions that we all care

about. :
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